A characterization of completeness of Menger PM-spaces

  • R. P. Pant
  • Abhijit Pant
  • Rale M. NikolićEmail author
  • Siniša N. Ješić


The purpose of this paper is to obtain an answer, in the setting of Menger PM-spaces, to the question on the existence of contractive mappings which admit discontinuity at the fixed point (see Rhoades in Contemp Math 72:233–245, 1988).


Menger PM-spaces fixed point contractive mapping 

Mathematics Subject Classification

Primary 47H10 



The last two listed authors acknowledge the support of the Ministry of Education, Science, and Technological Development of the Republic of Serbia, Grant No. 174032.


  1. 1.
    Bisht, R.K., Rakočević, V.: Generalized Meir–Keeler type contractions and discontinuity at fixed point. Fixed Point Theory 19(1), 57–64 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bisht, R.K., Rakočević, V.: Fixed points of convex and generalized convex contractions. Rend. del Circ. Matematico di Palermo Ser. (2018). CrossRefzbMATHGoogle Scholar
  3. 3.
    Ćirić, B.L.: On contraction type mappings. Math. Balkanica 1, 52–57 (1971)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Hicks, T., Rhoades, B.E.: Fixed points and continuity for multivalued mappings. Int. J. Math. Math. Sci. 15, 15–30 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Menger, K.: Statistical metric. Proc. Nat. Acad. Sci. USA 28, 535–537 (1942)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Özgür, N.Y., Taş, N.: Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. (2017). CrossRefzbMATHGoogle Scholar
  7. 7.
    Özgür, N.Y., Taş, N.: Some fixed-circle theorems and discontinuity at fixed circle. AIP Conf. Proc. 1926, 020048 (2018). CrossRefGoogle Scholar
  8. 8.
    Pant, A., Pant, R.P.: Fixed points and continuity of contractive maps. Filomat 31(11), 3501–3506 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pant, R.P.: Discontinuity and fixed points. J. Math. Anal. Appl. 240, 284–289 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pant, R.P., Özgür, N.Y., Taş, N.: On discontinuity problem at fixed point. Bull. Malays. Math. Sci. Soc. (2018). CrossRefGoogle Scholar
  11. 11.
    Rashid, M., Batool, I., Mehmood, N.: Discontinuous mappings at their fixed points and common fixed points with applications. J. Math. Anal. 9(1), 90–104 (2018)MathSciNetGoogle Scholar
  12. 12.
    Rhoades, B.E.: Contractive definitions and continuity. Contemp. Math. 72, 233–245 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 415–417 (1960)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Schweizer, B., Sklar, A.: Probabilistic metric spaces. Elsevier, North-Holland, New York (1983)zbMATHGoogle Scholar
  15. 15.
    Sehgal, V.M., Bharucha-Reid, A.T.: Fixed points of contraction mappings in PM-spaces. Math. Syst. Theory 6, 97–102 (1972)CrossRefGoogle Scholar
  16. 16.
    Subrahmanyam, P.V.: Completeness and fixed points. Monatsh. Math. 80, 325–330 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136–5, 1861–1869 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Taş, N., Özgür, N.Y.: A new contribution to discontinuity at fixed point. Fixed Point Theory 20(2), 715–728 (2019). CrossRefGoogle Scholar
  19. 19.
    Taş, N., Özgür, N.Y., Mlaiki, N.: New types of \(F_c\)-contractions and the fixed-circle Problem. Mathematics 6, 188 (2018)CrossRefGoogle Scholar
  20. 20.
    Zheng, D., Wang, P.: Weak \(\Theta -\phi \) - contractions and discontinuity. J. Nonlinear Sci. Appl. 10, 2318–2323 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, D. S. B. CampusKumaun UniversityNainitalIndia
  2. 2.Belgrade Metropolitan UniversityBelgradeSerbia
  3. 3.Department of Applied Mathematics, Faculty of Electrical EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations