Advertisement

An application of the w-weak generalized contractions theorem

  • Maria DobriţoiuEmail author
Article
  • 123 Downloads

Abstract

Using the w-weak generalized contractions theorem of Wongyat and Sintunavarat (Adv Diff Equ 2017:211, 2017) and their idea to apply this theorem to the nonlinear integral equations to obtain an existence and uniqueness result, in this paper we present another application of this theorem to a nonlinear Fredholm integral equation with modified argument, which completes the study of this equation.

Keywords

w-Distance altering distance function ceiling distance nonlinear Fredholm integral equation modified argument solution existence and uniqueness 

Mathematics Subject Classification

Primary 47H10 Secondary 45G10 

Notes

References

  1. 1.
    Aguirre Salazar, L., Reich, S.: A remark on weakly contractive mappings. J. Nonlinear Convex Anal. 16, 767–773 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alegre, C., Marin, J., Romaguera, S.: A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point theory Appl. 2014, 40 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ambro, M.: Approximation of the solutions of an integral equation with modified argument. Studia Univ. Babeş-Bolyai Math. 2, 26–32 (1978). (in Romanian)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Choudhury, B.S., Konar, P., Rhoades, B.E., Metyia, N.: Fixed point theorems for generalized weakly contractive mapping. Nonlinear Anal. 74(6), 2116–2126 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dobriţoiu, M.: An integral equation with modified argument. Studia Univ. Babeş-Bolyai Math. XLIX(3), 27–34 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dobriţoiu, M.: On an integral equation with modified argument. Acta Universitatis Apulensis, Mathematics-Informatics 11, 387–391 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dobriţoiu, M.: Analysis of an integral equation with modified argument. Studia Univ. Babeş-Bolyai Math. 51(1), 81–94 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dobriţoiu, M.: Analysis of a Nonlinear Integral Equation with Modified Argument from Physics. Int. J. Math. Models Methods Appl. Sci. (NAUN Electron. J.) 2(3), 403–412 (2008)Google Scholar
  9. 9.
    Dobriţoiu, M.: Integral Equations with Modifed Argument. Cluj University Press, Cluj-Napoca (2009). (in Romanian)Google Scholar
  10. 10.
    Dobriţoiu, M.: A nonlinear Fredholm integral equation. Transylv. J. Math. Mech. 1(1–2), 25–32 (2009)MathSciNetGoogle Scholar
  11. 11.
    Ilea, V., Otrocol, D.: Some properties of solutions of a functional-differential equation of second order with delay. Sci. World J. 2014, 878395 (2014).  https://doi.org/10.1155/2014/878395 CrossRefzbMATHGoogle Scholar
  12. 12.
    Lakzian, H., Aydi, H., Rhoades, B.E.: Fixed points for \((\phi,\psi,\rho )\)-weakly contractive mappings in metric spaces with w-distance. Appl. Math. Comput. 219(12), 6777–6782 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Rus, I.A.: Weakly Picard operators and applications. Semin Fixed Point Theory Babeş-Bolyai Univ Cluj-Napoca 2, 41–58 (2001)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Rus, I.A.: Principii şi aplicaţii ale teoriei punctului fix. Editura Dacia, Cluj-Napoca (1979). (in Romanian)Google Scholar
  15. 15.
    Wongyat, T., Sintunavarat, W.: The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fractional differential equations via w-distances. Adv. Diff. Equ. 2017, 211 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of PetroşaniPetroşaniRomania

Personalised recommendations