A new inertial double-projection method for solving variational inequalities

  • Aviv GibaliEmail author
  • Dang Van HieuEmail author


In this paper, we introduce a new algorithm of inertial form for solving monotone variational inequalities (VI) in real Hilbert spaces. Motivated by the subgradient extragradient method, we incorporate the inertial technique to accelerate the convergence of the proposed method. Under standard and mild assumption of monotonicity and Lipschitz continuity of the VI associated mapping, we establish the weak convergence of the scheme. Several numerical examples are presented to illustrate the performance of our method as well as comparing it with some related methods in the literature.


Subgradient extragradient method inertial effect variational inequality monotone operator Lipschitz continuity 

Mathematics Subject Classification

Primary 65J15 47H05 Secondary 47J25 47J20 



The authors would like to thank the associate editor and two anonymous referees for their valuable comments and suggestions which helped us very much in improving the original version of this paper. This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the project 101.01-2017.315.


  1. 1.
    Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Mat. Metody. 12, 1164–1173 (1976)Google Scholar
  4. 4.
    Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)zbMATHGoogle Scholar
  5. 5.
    Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Wiley, New York (1984)zbMATHGoogle Scholar
  6. 6.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Program. 63, 123–145 (1994)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions. EURO J. Comput. Optim. 4, 3–25 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Buong, N.: Strong convergence theorem of an iterative method for variational inequalities and fixed point problems in Hilbert spaces. Appl. Math. Comput. 217, 322–329 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ceng, L.-C., Yao, J.-C.: An extragradient-like approximation method for variational inequality problems and fixed point problems. Appl. Math. Comput. 190, 205–215 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optim. 61, 1119–1132 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dafermos, S.C.: Traffic equilibria and variational inequalities. Transp. Sci. 14, 42–54 (1980)CrossRefGoogle Scholar
  15. 15.
    Dafermos, S.C., McKelvey, S.C.: Partitionable variational inequalities with applications to network and economic equilibria. J. Optim. Theory Appl. 73, 243–268 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optim. 65, 2217–2226 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dong, Q.L., Gibali, A., Jiang, D., Tang, Y.: Bounded perturbation resilience of extragradient-type methods and their applications. J. Inequal. Appl. (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dong, Q.L., Gibali, A., Jiang, D., Ke, S.H.: Convergence of projection and contraction algorithms with outer perturbations and their applications to sparse signals recovery. J. Fixed Point Theory Appl. (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)zbMATHGoogle Scholar
  20. 20.
    Fang, C., Chen, S.: A subgradient extragradient algorithm for solving multi-valued variational inequality. Appl. Math. Comput. 229, 123–130 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 34, 138–142 (1963)Google Scholar
  22. 22.
    Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIII. Ser. 7, 91–140 (1964)Google Scholar
  23. 23.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York and Basel (1984)zbMATHGoogle Scholar
  24. 24.
    Hartman, P., Stampacchia, G.: On some non-linear elliptic diferential-functional equations. Acta Math. 115, 271–310 (1966)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kazmi, K.R., Rizvi, S.H.: A hybrid extragradient method for approximating the common solutions of a variational inequality, a system of variational inequalities, a mixed equilibrium problem and a fixed point problem. Appl. Math. Comput. 218, 5439–5452 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  28. 28.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Mat. Metody 12, 747–756 (1976)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15, 67–79 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Maingé, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Malitsky, Y.V., Semenov, V.V.: An extragradient algorithm for monotone variational inequalities. Cybern. Syst. Anal. 50, 271–277 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Moudafi, A.: Second-order differential proximal methods for equilibrium problems. J. Inequal. Pure Appl. Math. 4, 1–7 (2003)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Nakajo, K.: Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces. Appl. Math. Comput. 271, 251–258 (2015)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Zh.Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)CrossRefGoogle Scholar
  37. 37.
    Popov, L.D.: A modification of the Arrow-Hurwicz method for searching for saddle points. Mat. Zametki 28, 777–784 (1980)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsORT Braude CollegeKarmielIsrael
  2. 2.The Center for Mathematics and Scientific ComputationUniversity of HaifaHaifaIsrael
  3. 3.Applied Analysis Research Group, Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations