Advertisement

Solarity of sets in max-approximation problems

  • Alexey R. AlimovEmail author
Article
  • 43 Downloads

Abstract

Let \({\mathrm {F}}_M\) be the max-projection operator (the farthest point mapping) associated with a given set M. A set M is called a local \(\max \)-sun at a point \(x_0\) if there is a farthest point \(\widehat{y}\in {\mathrm {F}}_Mx_0\) and a number \(\delta >0\) such that \( \widehat{y} \in {\mathrm {F}}_Mx\) for any point \(x\in \bigl [x_0, x_0+\delta (\widehat{y}-x_0)\bigr )\). A set M is called a local \(\max \)-sun on a set U if M is a local \(\max \)-sun at any point \(x_0\in U\). Some solarity and stability properties of the max-projection operator are established. Sufficient conditions in terms of the stability of the max-projection operator are given for a set to be a local \(\max \)-sun.

Keywords

Farthest point max-approximation max-distance sun local max-sun 

Mathematics Subject Classification

Primary 41A65 Secondary 47H10 52A30 

Notes

Acknowledgements

The author is grateful to I. G. Tsar’kov for valuable comments and to the referee for noticing several misprints in the original manuscript and whose suggestions have saved other readers from a clumsy proof of Proposition 2.

References

  1. 1.
    Alimov, A.R.: Selections of the best and near-best approximation operators and solarity. Proc. Steklov Inst. Math. 303, 10–17 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alimov, A.R.: Selections of the metric projection operator and strict solarity of sets with continuous metric projection. Sb. Math. 208(7), 915–928 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alimov, A.R., Tsar’kov, I.G.: Connectedness and solarity in problems of best and near-best approximation. Russ. Math. Surv. 71(1), 1–77 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Balashov, M.V., Ivanov, G.E.: On farthest points of sets. Math. Notes 8(2), 159–166 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Balashov, M.V.: Antidistance and antiprojection in the Hilbert space. J. Convex Anal. 22(2), 521–536 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Balashov, M.V., Ivanov, G.E.: The farthest and the nearest points of sets. J. Convex Anal. 25(3), 1019–1031 (2018)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Barotni, M., Papini, P.L.: Remotal sets revisted. Taiwan. J. Math. 5(2), 367–373 (2001)CrossRefGoogle Scholar
  8. 8.
    Blatter, J.: Weiteste Punkte und nächste Punkte. Rev. Roum. Math. Pures Appl. 14, 615–621 (1969)zbMATHGoogle Scholar
  9. 9.
    Deville, R., Zizler, V.E.: Farthest points in \(w^*\)-compact sets. Bull. Austr. Math. Soc. 38, 433–439 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Goncharov, V.V., Ivanov, G.E.: Strong and weak convexity of closed sets in a Hilbert space. In: Daras, N., Rassias, T. (eds.) Operations Research, Engineering, and Cyber Security, Springer Optimization and its Applications, vol. 113, pp. 259–297. Springer, Cham (2017)CrossRefGoogle Scholar
  11. 11.
    Ivanov, G.E.: Farthest points and strong convexity of sets. Math. Notes 87(3), 355–366 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Karlov, M.I., Tsar’kov, I.G.: Convexity and connectedness of Chebyshev sets and suns. Fundam. Prikl. Mat. 3(4), 967–978 (1997). (in Russian)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Panda, B.B., Kapoor, O.P.: On farthest points of sets. J. Math. Anal. Appl. 62, 345–353 (1978)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Park, S.: Recent applications of some analytical fixed point theorems. In: Chiang, R. (ed.) Nonlinear Analysis and Convex Analysis (NACA 2015), pp. 259–273. Yokohama Publ, Yokohama (2016)Google Scholar
  15. 15.
    Motzkin, T.S., Straus, E.G., Valentine, F.A.: The number of farthest points. Pacific J. Math. 3, 221–232 (1953)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Precupanu, T.: Relationships between farthest point problem and best approximation problem. Anal. Sci. Univ. “Al. I. Cuza” Mat. 57, 1–12 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Sain, D., Paul, K., Ray, A.: Farthest point problem and \(M\)-compact sets. JNCA 18(3), 451–457 (2017)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Sain, D., Kadets, V., Paul, K., Ray, A.: Chebyshev centers that are not farthest points. Indian J. Pure Appl. Math. 49(2), 189–204 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tsar’kov, I.G.: Singular sets of surfaces. Russ. J. Math. Phys. 24, 263–271 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tsar’kov, I.G.: Weakly monotone sets and continuous selection in asymmetric spaces. Sb. Math. (2019).  https://doi.org/10.1070/SM9107

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations