Isolating blocks of isolated invariant continua and fixed point index

  • Francisco R. Ruiz del PortalEmail author
  • José M. SalazarEmail author


In this paper we study some properties of isolated invariant continua for arbitrary homeomorphisms of \({{\mathbb {R}}}^n\). We study the existence of special isolating blocks for them which allow us to compute the fixed point indices of the iterates of arbitrary homeomorphisms at arbitrary isolated continua in dimension two. Among the consequences we would highlight the following:
  • If \(K \subset {{\mathbb {R}}}^2\) is an isolated invariant continuum that decomposes the plane in more than two connected components, then K contains a periodic orbit.

  • A proper invariant continuum of the 2-sphere containing the set of periodic orbits of a homeomorphism is not isolated.

  • If K is an isolated invariant continuum for \(f: S^n \rightarrow S^n\), then \(S^n {\setminus } K\) has a finite amount of connected components.


Isolated invariant continua isolating block fixed point index Conley index 

Mathematics Subject Classification

37C25 37B30 54H20 54H25 



  1. 1.
    Blanco Gómez, E., Hernández-Corbato, L., Ruiz del Portal, F.R.: Uniqueness of dynamical zeta functions and symmetric products. J. Fixed Point Theory Appl. 18(4), 689–719 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonino, M.: Lefschetz index for orientation reversing planar homeomorphisms. Proc. Am. Math. Soc. 130(7), 2173–2177 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Borsuk, K.: Concerning homotopy properties of compacta. Fund. Math. 62, 223–254 (1968)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brown, R.F.: The Lefschetz fixed point theorem. Scott Foreman Co., London (1971)zbMATHGoogle Scholar
  5. 5.
    Dold, A.: Fixed point index and fixed point theorem for Euclidean neighborhood retracts. Topology 4, 1–8 (1965)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dancer, E.N., Ortega, R.: The index of Lyapunov stable fixed points. J. Dyn. Differ. Equ. 6, 631–637 (1994)CrossRefGoogle Scholar
  7. 7.
    Franks, J.: The Conley index and non-existence of minimal homeomorphisms. Illinois J. Math. 43(3), 457–464 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Franks, J., Richeson, D.: Shift equivalence and the Conley index. Trans. Am. Math. Soc. 352(7), 3305–3322 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Graff, G., Nowak-Przygodzki, P.: Fixed point indices of the iterations of planar homeomorphisms. Topol. Methods Nonl. Anal. 22, 159–166 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Graff, G., Nowak-Przygodzki, P., Ruiz del Portal, F.R.: Local fixed point indices of iterations of planar maps. J. Dyn. Differ. Equ. 23, 213–223 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Graff, G.: Fixed point indices of iterates of a low-dimensional diffeomorphism at a fixed point which is an isolated invariant set. Arch. Math. (Basel) 110, 617–627 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Handel, M.: There are no minimal homeomorphisms of the multipunctured plane. Ergod. Theory Dyn. Syst. 12, 75–83 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hernández-Corbato, L., Le Calvez, P., Ruiz del Portal, F.R.: About the homological discrete Conley index of isolated invariant acyclic continua. Geom. Topol. 17, 2977–3026 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hernández-Corbato, L., Ruiz del Portal, F.R., Sánchez-Gabites, J.J.: Infinite series in cohomology: attractors and Conley index, preprintGoogle Scholar
  15. 15.
    Jezierski, J., Marzantowicz, W.: Homotopy methods in topological fixed and periodic point theory. Springer, New York (2005)zbMATHGoogle Scholar
  16. 16.
    Kuperberg, K.: Fixed points of orientation reversing homeomorphisms of the plane. Proc. Am. Math. Soc. 112, 223–229 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Le Calvez, P.: Une propriété dynamique des homéomorphismes du plan au voisinage d’un point fixe d’indice > 1. Topology 38(1), 23–35 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Le Calvez, P., Yoccoz, J.-C.: Un théoréme d’indice pour les homéomorphismes du plan au voisinage d’un poin fixe. Ann. Math. 146, 241–293 (1997)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Le Calvez, P., Yoccoz, J.-C.: Suite des indices de Lefschetz des itérés pour un domaine de Jordan qui est un bloc isolant, UnpublishedGoogle Scholar
  20. 20.
    Le Calvez, P., Ruiz del Portal, F.R., Salazar, J.M.: Fixed point index of the iterates of \({{\mathbb{R}}}^3\)-homeomorphisms at fixed points which are isolated invariant sets. J. Lond. Math. Soc. 83, 683–696 (2010)CrossRefGoogle Scholar
  21. 21.
    Mauldin, R.D. (ed.): The Scottish book. Birkhäuser, Boston (1981)zbMATHGoogle Scholar
  22. 22.
    Nussbaum, R.D.: The fixed point index and some applications. Séminaire de Mathématiques supérieures, Les Presses de L’Université de Montréal (1985)Google Scholar
  23. 23.
    Ortega, R.: A criterion for asymptotic stability based on topological degree Proceedings of the First World Congress of Nonlinear Analysts, Tampa 383–394 (1992)Google Scholar
  24. 24.
    Ruiz del Portal, F.R.: Planar isolated and stable fixed points have index = 1. J. Differ. Equ. 199(1), 179–188 (2004)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ruiz del Portal, F.R., Salazar, J.M.: Fixed point index of iterations of local homeomorphisms of the plane: a Conley-index approach. Topology 41, 1199–1212 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ruiz del Portal, F.R., Salazar, J.M.: A stable/unstable manifold theorem for local homeomorphisms of the plane. Ergodic Theory Dyn. Syst. 25, 301–317 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ruiz del Portal, F.R., Sánchez-Gabites, J.J.: Čech cohomology of attractors of discrete dynamical systems. J. Differ. Equ. 257, 2826–2845 (2014)CrossRefGoogle Scholar
  28. 28.
    Salazar, J.M.: Instability property of homeomorphisms on surfaces. Ergod. Theory Dyn. Syst. 26, 539–549 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Geometría y Topología UniversidadComplutense de MadridSpain
  2. 2.Departamento de Física y Matemáticas Universidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations