Advertisement

Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities

  • Duong Viet ThongEmail author
  • Aviv Gibali
Article
  • 52 Downloads

Abstract

The purpose of this paper is to study and analyze two new extragradient methods for solving non-Lipschitzian and pseudo-monotone variational inequalities in real Hilbert spaces. Under suitable conditions, weak and strong convergence theorems of the proposed methods are established. We present academic and numerical examples for illustrating the behavior of the proposed algorithms.

Keywords

Extragradient method Halpern method variational inequality pseudo-monotone operator 

Mathematics Subject Classification

65J15 65Y05 47H05 47J25 

Notes

Acknowledgements

The authors would like to thank Professor Simeon Reich and the referees for their comments on the manuscript which helped in improving earlier version of this paper.

References

  1. 1.
    Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekon. i Mat. Metody. 12, 1164–1173 (1976)Google Scholar
  2. 2.
    Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth. Softw. 26, 827–845 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms. 56, 301–323 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757–765 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols. I and II. Springer, New York (2003)Google Scholar
  9. 9.
    Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat 34, 138–142 (1963)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat. Sez. I, VIII. Ser 7, 91–140 (1964)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gibali, A.: A new non-Lipschitzian projection method for solving variational inequalities in Euclidean spaces. J. Nonlinear Anal. Optim. Theory Appl. 6, 41–51 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)zbMATHGoogle Scholar
  13. 13.
    Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Iusem, A.N.: An iterative algorithm for the variational inequality problem. Comput. Appl. Math. 13, 103–114 (1994)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Iusem, A.N., Gárciga Otero, R.: Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer. Funct. Anal. Optim. 22, 609–640 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in refelexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Karamardian, S.: Complementarity problems over cones with monotone and pseudo-monotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khobotov, E.N.: Modifications of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1987)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Konnov, I.V.: Equilibrium Models and Variational Inequalities. Mathematics in Science and Engineering. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  20. 20.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. i Mat. Metody. 12, 747–756 (1976)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Liu, L.S.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach space. J. Math. Anal. Appl. 194, 114–125 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Marcotte, P.: Application of Khobotov’s algorithm to variational inequalities and network equilibrium problems. Inf. Syst. Oper. Res. 29, 258–270 (1991)zbMATHGoogle Scholar
  26. 26.
    Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pang, J.S., Gabriel, S.A.: NE/SQP: a robust algorithm for the nonlinear complementarity problem. Math. Program. 60, 295–337 (1993)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Reich, S.: Constructive Techniques for Accretive and Monotone Operators. Applied Nonlinear Analysis, pp. 335–345. Academic Press, New York (1979)Google Scholar
  30. 30.
    Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for variational inequality problems. Numer. Algorithms. 79, 597–610 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Vuong, P.T.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. 176, 399–409 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms.  https://doi.org/10.1007/s11075-018-0547-6 (2018)
  35. 35.
    Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Applied Analysis Research Group Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Department of MathematicsORT Braude CollegeKarmielIsrael
  3. 3.The Center for Mathematics and Scientific ComputationUniversity of HaifaHaifaIsrael

Personalised recommendations