Advertisement

A modified successive projection method for Mann’s iteration process

  • Songnian He
  • Zhuo Yang
Article
  • 16 Downloads

Abstract

Mann’s iteration process, which is often used to solve the fixed point problems of nonexpansive mappings, has only weak convergence in infinite-dimensional Hilbert spaces. One way to overcome this weakness is the hybrid method proposed by Nakajo and Takahashi in 2003. But the hybrid method is difficult to implement, since the projection operator on an intersection of the domain and two half-spaces in each step has no closed-form formulae in general. A modified successive projection method for Mann’s iteration process proposed in this paper not only has strong convergence, but also is easy to implement. Therefore, our method effectively improves the hybrid method. We also extend our method to solve the nonexpansive semigroup problems. The numerical results show the superiority of the method in this paper.

Keywords

Successive projection method nonexpansive mapping nonexpansive semigroup strong convergence hybrid method metric projection 

Mathematics Subject Classification

47H09 47H10 65K10 

Notes

Acknowledgements

Many thanks to the reviewers for their valuable comments and suggestions.

References

  1. 1.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)zbMATHGoogle Scholar
  2. 2.
    Lions, P.L.: Approximation de points fixes de contractions. C. R. Acad. Sci. Ser. A B Paris 284, 1357–1359 (1977)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147–150 (1974)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shioji, N., Takahashi, W.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Am. Math. Soc. 125, 3641–3645 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bruck, R.E., Reich, S.: Accretive operators, Banach limits, and dual ergodic theorems. Bull. Acad. Pol. Sci. 29, 585–589 (1981)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kopecká, E., Reich, S.: Nonexpansive retracts in Banach spaces. Banach Center Publ. 77, 161–174 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Genel, A., Lindenstrass, J.: An example concerning fixed points. Isr. J. Math. 22, 81–86 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279, 372–379 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed point iteration processes. J. Nonlinear Anal. 26, 2400–2411 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    He, S., Yang, C., Duan, P.: Realization of the hybrid method for Mann iterations. Appl. Math. Comput. 217, 4239–4247 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    He, S., Tian, H., Xu, H.K.: The selective projection method for convex feasibility and split feasibility problems. J. Nonlinear Convex Anal. 19, 1199–1215 (2018)MathSciNetGoogle Scholar
  19. 19.
    Shioji, N., Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)Google Scholar
  20. 20.
    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  21. 21.
    Shimizu, T., Tahakashi, W.: Strong convergernce to common fixed points of families of nonexpanxive mappings. J. Math. Anal. Appl. 211, 71–83 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Reich, S.: A note on the mean ergodic theorem for nonlinear semigroups. J. Math. Anal. Appl. 91, 547–551 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, London (1970)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.College of ScienceCivil Aviation University of ChinaTianjinChina

Personalised recommendations