Fixed point theory for countably weakly condensing maps and multimaps in non-separable Banach spaces

  • Afif Ben AmarEmail author
  • Saoussen Derbel
  • Donal O’Regan
  • Tian Xiang


In this paper, we establish new fixed point results for some weakly countably condensing and weakly sequentially continuous maps, fixed-point results of Krasnosel’skii–Daher type for the sum of two weakly sequentially continuous mappings in Banach spaces, a multivalued version of the Daher fixed point theorem for weakly countably condensing multimaps having w-weakly closed graph in Banach spaces and a Krasnosel’skii–Daher-type theorem for multimaps. In addition, we show the applicability of our results to the theory of Volterra integral equations in Banach spaces. Our results are formulated in terms of the axiomatic measure of weak noncompactness.


Weakly sequentially continuous weakly countably condensing weakly countably \(1-\)set-contractive w-weakly closed graph integral equation measure of weak noncompactness 

Mathematics Subject Classification

47H09 47H10 47H30 



  1. 1.
    Agarwal, R.P., O’Regan, D.: A generalization of the Krasnoselskii–Petryshyn compression and expansion theorem: an essential map approach. J. Korean Math. Soc. 38, 669–681 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Agarwal, R.P., O’Regan, D., Taoudi, M.A.: Browder Krasnoselskii-type fixed point theorems in Banach spaces. Fixed Point Theory Appl. 2010, 243716 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Angosto, C., Cascales, B.: Measures of weak noncompactness in Banach spaces. Topol. Appl. 156, 1412–1421 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arino, O., Gautier, S., Penot, J.P.: A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations. Funkciala. Ekvac. 27, 273–279 (1984)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Banas, J., Ben Amar, A.: Measures of noncompactness in locally convex spaces and fixed point theory for the sum of two operators on unbounded convex sets. Comment. Math. Univ. Carolin. 54(1), 21–40 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Banas, J., Rivero, J.: On measures of weak noncompactness. Ann. Math. Pure Appl. 151, 213–224 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Banas, J., Martinón, A.: Measures of weak noncompactness in Banach sequence spaces. Port. Math. 59(2), 131–138 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Leyden (1976)CrossRefGoogle Scholar
  9. 9.
    Barroso, C.S., Teixeira, E.V.: A topological and geometric approach to fixed point results for sum of operators and applications. Nonlinear Anal. 60, 625–650 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ben Amar, A., Mnif, M.: Leray–Schauder alternatives for weakly sequentially continuous mappings and application to transport equation. Math. Methods Appl. Sci. 33, 80–90 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ben Amar, A., Xu, S.: Measures of weak noncompactness and fixed point theory for 1-set weakly contractive operators on unbounded domains. Anal. Theory Appl. 27, 224–238 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Biondini, M., Cardinali, T.: Existence of solutions for a nonlinear integral equation via a hybrid fixed Point theorem. Results Math. 71, 1259–1276 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Browder, F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Am. Math. Soc. 73, 875–882 (1967)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cardinali, T., Papalini, F.: Fixed point theorems for multifunctions in topological vector spaces. J. Math. Anal. Appl. 186, 769–777 (1994)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cardinali, T., Rubbioni, P.: Multivalued fixed point theorems in terms of weak topology and measure of weak noncompactness. J. Math. Anal. Appl. 405, 409–415 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cardinali, T., Rubbioni, P.: Countably condensing multimaps and fixed points. Electron. J. Qual. Theory Differ. Equ. 83, 1–9 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Daher, S.J.: On a fixed point principle of Sadovskii. Nonlinear Anal. Theory Methods Appl. 2, 643–645 (1978)MathSciNetCrossRefGoogle Scholar
  18. 18.
    De Blasi, F.S.: On a property of the unit sphere in Banach space. Bull. Math. Soc. Sci. Math. R.S. Roumanie 21, 259–262 (1977)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dobrakov, I.: On representation of linear operators on \(C_0(T, X)\). Czechoslov. Math. J. 21, 13–30 (1971)zbMATHGoogle Scholar
  20. 20.
    Garcia-Falset, J., Morales, C.H.: Existence theorems for m-accretive operators in Banach spaces. J. Math. Anal. Appl. 309, 453–461 (1967)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Garcia-Falset, J., Latrach, K.: Krasnosel’skii-type fixed pointtheoremsfor weakly sequentially continuous mapoings. Bull. Lond. Math. Soc. 44, 25–38 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Geitz, R.F.: Pettis integration. Proc. Am. Math. Soc. 82, 81–86 (1981)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Himmelberg, C.J., Porter, J.R., Van Vleck, J.R.: Fixed point theorems for condensing multifunctions. Proc. Am. Math. Soc. 23, 635–641 (1969)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hussain, N., Taoudi, M.A.: Krasnosel’skii-type fixed point theorems with applications to Volterra integral equations. Fixed Point Theory Appl. 2013, 196 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kim, I.S.: Fixed Points, Eigenvalues and Surjectivity. J. Korean Math. Soc. 45, 151–161 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kato, T.: Nonlinear semigroups and evolution equation. J. Math. Soc. Japan 19, 508–520 (1967)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kryczka, A., Prus, S., Szczepanik, M.: Measure of weak noncompactness and real interpolation of operators. Bull. Aust. Math. Soc. 62, 389–401 (2000)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kryczka, A., Prus, S.: Measure of weak noncompactness under complex interpolation. Stud. Math. 147, 89–102 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mitchell, A.R., Smith, C.K.L.: An existence theorem for weak solutions of differential equations in Banach spaces. In: Lakshmikantham, V. (ed.) Nonlinear Equations in Abstract Spaces, pp. 387–404. Academic Press, San Diego (1978)CrossRefGoogle Scholar
  30. 30.
    O’Regan, D.: Fixed-point theory for weakly sequentially continuous mappings. Math. Comput. Model. 27, 1–14 (1998)MathSciNetCrossRefGoogle Scholar
  31. 31.
    O’Regan, D., Taoudi, M.A.: Fixed point theorems for the sum of two weakly sequentially continuous mappings. Nonlinear Anal. 73, 283–289 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sadovskii, B.N.: A fixed point principle. Funct. Anal. Appl. 1, 151–153 (1967)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Smart, D.R.: Fixed Point Theorems. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  34. 34.
    Taoudi, M.A.: Krasnosel’skii type fixed point theorems under weak topology features. Nonlinear Anal. 72, 478–482 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Xiang, T., Georgiev, S.G.: Noncompact-type Krasnoselskiifixed-point theorems and their applications. Math. Methods Appl. Sci. 39, 833–863 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Xiang, T., Yuan, R.: Critical type of Krasnosel’skii fixed point theorem. Proc. Am. Math. Soc. 3, 1033–1044 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Afif Ben Amar
    • 1
    Email author
  • Saoussen Derbel
    • 1
  • Donal O’Regan
    • 2
  • Tian Xiang
    • 3
  1. 1.Department of Mathematics, Faculty of SciencesSfax UniversitySfaxTunisia
  2. 2.School of Mathematics, Statistics and Applied MathematicsNational University of IrelandGalwayIreland
  3. 3.Institute for Mathematical SciencesRenmin University of ChinaBejingPeople’s Republic of China

Personalised recommendations