# A splitting algorithm for finding fixed points of nonexpansive mappings and solving equilibrium problems

• Le Dung Muu
• Xuan Thanh Le
Article

## Abstract

We consider the problem of finding a fixed point of a nonexpansive mapping, which is also a solution of a pseudo-monotone equilibrium problem, where the bifunction in the equilibrium problem is the sum of two ones. We propose a splitting algorithm combining the gradient method for equilibrium problem and the Mann iteration scheme for fixed points of nonexpansive mappings. At each iteration of the algorithm, two strongly convex subprograms are required to solve separately, one for each of the component bifunctions. Our main result states that, under paramonotonicity property of the given bifunction, the algorithm converges to a solution without any Lipschitz-type condition as well as Hölder continuity of the bifunctions involved.

## Keywords

Monotone equilibria Fixed point Common solution Splitting algorithm

## Mathematics Subject Classification

47H05 47H10 90C33

## Notes

### Acknowledgements

The authors would like to thank the associate editor and anonymous referee for their constructive comments and helpful remarks. This work is supported by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam under grant number 101.01-2017.315.

## References

1. 1.
Anh, P.K., Hai, T.N.: Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems. Numer. Algorithm 76(1), 67–91 (2017)
2. 2.
Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optimization 62(2), 271–283 (2013)
3. 3.
Anh, P.N., Muu, L.D.: A hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems. Optim. Lett. 8(2), 727–738 (2014)
4. 4.
Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Existence and solution methods for equilibria. Eur. J. Oper. Res. 227(1), 1–11 (2013)
5. 5.
Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63(1–4), 123–145 (1994)
6. 6.
Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithm 8(2), 221–239 (1994)
7. 7.
Cruz, J.Y.B., Millán, R.D.: A direct splitting method for nonsmooth variational inequalities. J. Optim. Theory Appl. 161(3), 728–737 (2014)
8. 8.
Duc, P.M., Muu, L.D.: A splitting algorithm for a class of bilevel equilibrium problems involving nonexpansive mappings. Optimization 65(10), 1855–1866 (2016)
9. 9.
Duc, P.M., Muu, L.D., Quy, N.V.: Solution-existence and algorithms with their convergence rate for strongly pseudomonotone equilibrium problems. Pac. J. Optim. 12(4), 833–845 (2016)
10. 10.
Eckstein, J., Svaiter, A.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48(2), 787–811 (2009)
11. 11.
Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequality, vol. III, pp. 103–113. Academic Press, New York (1972)Google Scholar
12. 12.
Hai, T.N., Vinh, N.T.: Two new splitting algorithms for equilibrium problems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A. Mat. 111(4), 1051–1069 (2017)
13. 13.
Hieu, D.V., Moudafi, A.: A barycentric projected-subgradient algorithm for equilibrium problems. J. Nonlinear Var. Anal. 1(1), 43–59 (2017)
14. 14.
Hieu, D.V., Muu, L.D., Anh, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algorithms 73(1), 197–217 (2016)
15. 15.
Hung, P.G., Muu, L.D.: The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions. Nonlinear Anal. 74(17), 6121–6129 (2011)
16. 16.
Iiduka, H., Yamada, I.: A subgradient-type method for the equilibrium problem over the fixed point set and its applications. Optimization 58(2), 251–261 (2009)
17. 17.
Iusem, A.N.: On some properties of paramonotone operators. J. Convex Anal. 5(2), 269–278 (1998)
18. 18.
Iusem, A.N., Sosa, W.: Iterative algorithms for equilibrium problems. Optimization 52(3), 301–316 (2003)
19. 19.
Mastroeni, G.: Gap functions for equilibrium problems. J. Glob. Optim. 27(4), 411–426 (2003)
20. 20.
Moudafi, A.: On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 359(2), 508–513 (2009)
21. 21.
Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18(12), 1159–1166 (1992)
22. 22.
Muu, L.D., Quoc, T.D.: Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash–Cournot equilibrium model. J. Optim. Theory Appl. 142(1), 185–204 (2009)
23. 23.
Muu, L.D., Quy, N.V.: On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam J. Math. 43, 229–238 (2015)
24. 24.
Nikaidô, H., Isoda, K.: Note on noncooperative convex games. Pac. J. Math. 5(5), 807–815 (1955)
25. 25.
Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)
26. 26.
Quoc, T.D., Anh, P.N., Muu, L.D.: Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim. 52(1), 139–159 (2012)
27. 27.
Quoc, T.D., Muu, L.D., Hien, N.V.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749–776 (2008)
28. 28.
Reich, S.: A limit theorem for projections. Linear Multilinear Algebra 13(3), 281–290 (1983)
29. 29.
Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. Contemp. Math. 568, 225–240 (2012)
30. 30.
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 5, 877–890 (1976)
31. 31.
Santos, P.S.M., Scheimberg, S.: An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math. 30(1), 91–107 (2011)
32. 32.
Sun, S.: An alternative regularization method for equilibrium problems and fixed point of nonexpansive mappings. J. Appl. Math. 2012, Article ID 202860 (2012).
33. 33.
Svaiter, B.F.: On weak convergence of the Douglas–Rachford method. SIAM J. Control Optim. 49(1), 280–287 (2011)
34. 34.
Tada, A., Takahashi, W.: Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem. J. Optim. Theory Appl. 133(3), 359–370 (2007)
35. 35.
Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331(1), 506–515 (2007)
36. 36.
Tan, K.-K., Xu, H.-K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178, 301–308 (1993)
37. 37.
Tseng, P.: A modied forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000)
38. 38.
Tuy, H.: Convex Analysis and Global Optimization, 2nd edn. Springer, Berlin (2016)
39. 39.
Vuong, P.T., Strodiot, J.-J., Nguyen, V.H.: On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space. Optimization 64(2), 429–451 (2015)