Advertisement

New extragradient methods for solving variational inequality problems and fixed point problems

  • Duong Viet Thong
  • Dang Van Hieu
Article
  • 121 Downloads

Abstract

In this paper, we introduce two new iterative algorithms for finding a common element of the set of fixed points of a quasi-nonexpansive mapping and the set of solutions of the variational inequality problem with a monotone and Lipschitz continuous mapping in real Hilbert spaces, by combining a modified Tseng’s extragradient scheme with the Mann approximation method. We prove weak and strong convergence theorems for the sequences generated by these iterative algorithms. The main advantages of our algorithms are that the construction of solution approximations and the proof of convergence of the algorithms are performed without the prior knowledge of the Lipschitz constant of cost operators. Finally, we provide numerical experiments to show the efficiency and advantage of the proposed algorithms.

Keywords

Variational inequality problem fixed point problem extragradient method subgradient extragradient method Tseng’s extragradient method Mann method Halpern method 

Mathematics Subject Classification

47H10 47J25 47H45 65J15 

Notes

Acknowledgements

The authors would like to thank Professor Simeon Reich and the referee(s) for their comments on the manuscript which helped us very much in improving and presenting the original version of this paper. The second author was partially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the project 101.01-2017.315.

References

  1. 1.
    Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148(2), 318–335 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth. Softw. 26, 827–845 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ceng, L.C., Hadjisavvas, N., Wong, N.C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ceng, L.C., Yao, J.C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan. J. Math. 10, 1293–1303 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Facchinei, F., Pang, J.S.: Finite—Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)zbMATHGoogle Scholar
  9. 9.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)zbMATHGoogle Scholar
  10. 10.
    Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)MathSciNetCrossRefGoogle Scholar
  11. 11.
    He, B.S., Liao, L.Z.: Improvements of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hieu, D.V., Thong, D.V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities. J. Glob. Optim. 70, 385–399 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hieu, D.V.: Halpern subgradient extragradient method extended to equilibrium problems. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 111, 823–840 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hieu, D.V., Muu, L.D., Anh, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algorithms 73, 197–217 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hieu, D.V.: An explicit parallel algorithm for variational inequalities. Bull. Malays. Math. Sci. Soc. (2017).  https://doi.org/10.1007/s40840-017-0474-z
  17. 17.
    Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inversestrongly monotone mappings. Nonlinear Anal. 61, 341–350 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  21. 21.
    Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2000)zbMATHGoogle Scholar
  22. 22.
    Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  23. 23.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody 12, 747–756 (1976)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Liu, L.S.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 114–125 (1995)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Maingé, P.E., Gobinddass, M.L.: Convergence of one step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171, 146–168 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theor. Appl. 128, 191–201 (2006)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math Anal. Appl. 67, 274–276 (1979)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Reich, S.: Constructive Techniques for Accretive and Monotone Operators. Applied Nonlinear Analysis, pp. 335–345. Academic Press, New York (1979)zbMATHGoogle Scholar
  35. 35.
    Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. 258, 4413–4416 (1964)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)zbMATHGoogle Scholar
  39. 39.
    Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms (2017).  https://doi.org/10.1007/s11075-017-0412-z MathSciNetCrossRefGoogle Scholar
  40. 40.
    Thong, D.V., Hieu, D.V.: Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems. Optimization 67, 83–102 (2018)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Thong, D.V.: Viscosity approximation methods for solving fixed point problems and split common fixed point problems. J. Fixed Point Theory Appl. 19, 1481–1499 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Thong, D.V., Hieu, D.V.: An inertial method for solving split common fixed point problems. J. Fixed Point Theory Appl. 19, 3029–3051 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for inequality variational problems. Numer. Algorithms (2017).  https://doi.org/10.1007/s11075-017-0452-4
  44. 44.
    Thong, D.V.: Viscosity approximation method for Lipschitzian pseudocontraction semigroups in Banach spaces. Vietnam J. Math. 40, 515–525 (2012)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Thong, D.V.: Viscosity approximation method for nonexpansive semigroups in Banach spaces. Vietnam J. Math. 42, 63–72 (2014)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Thong, D.V., Hieu, D.V.: A new approximation method for finding common fixed points of families of demicontractive operators and applications. J. Fixed Point Theory Appl. 20(2), 27 (2018). Art. 73MathSciNetCrossRefGoogle Scholar
  47. 47.
    Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Wang, F.H., Xu, H.K.: Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng’s extragradient method. Taiwan. J. Math. 16, 1125–1136 (2012)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Yao, Y., Marino, G., Muglia, L.: A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality. Optimization 63, 559–569 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Applied Analysis Research Group, Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Department of MathematicsCollege of Air ForceNhatrang CityVietnam

Personalised recommendations