Sign-changing solutions to a partially periodic nonlinear Schrödinger equation in domains with unbounded boundary

  • Mónica Clapp
  • Yéferson Fernández


We consider the problem
$$\begin{aligned} -\Delta u+\left( V_{\infty }+V(x)\right) u=|u|^{p-2}u,\quad u\in H_{0} ^{1}(\Omega ), \end{aligned}$$
where \(\Omega \) is either \(\mathbb {R}^{N}\) or a smooth domain in \(\mathbb {R} ^{N}\) with unbounded boundary, \(N\ge 3,\) \(V_{\infty }>0,\) \(V\in \mathcal {C} ^{0}(\mathbb {R}^{N}),\) \(\inf _{\mathbb {R}^{N}}V>-V_{\infty }\) and \(2<p<\frac{2N}{N-2}\). We assume V is periodic in the first m variables, and decays exponentially to zero in the remaining ones. We also assume that \(\Omega \) is periodic in the first m variables and has bounded complement in the other ones. Then, assuming that \(\Omega \) and V are invariant under some suitable group of symmetries on the last \(N-m\) coordinates of \(\mathbb {R}^{N}\), we establish existence and multiplicity of sign-changing solutions to this problem. We show that, under suitable assumptions, there is a combined effect of the number of periodic variables and the symmetries of the domain on the number of sign-changing solutions to this problem. This number is at least \(m+1\)


Nonlinear Schrödinger equation partially periodic potential exterior domain with unbounded boundary sign-changing solutions Lusternik–Schnirelmann theory for noncompact groups 

Mathematics Subject Classification

35Q55 (35J20, 35B06) 


  1. 1.
    Ackermann, N.: Solution set splitting at low energy levels in Schrödinger equations with periodic and symmetric potential. J. Differ. Equ. 246(4), 1470–1499 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ackermann, N., Weth, T.: Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting. Commun. Contemp. Math. 7(3), 269–298 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alama, S., Li, Y.Y.: On “multibump” bound states for certain semilinear elliptic equations. Indiana Univ. Math. J. 41(4), 983–1026 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Angenent, S.: The shadowing lemma for elliptic PDE. In: Dynamics of Infinite-Dimensional Systems (Lisbon, 1986). NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., vol. 37, pp. 7–22. Springer, Berlin (1987)Google Scholar
  5. 5.
    Antonyan, Sergey A.: Extensorial properties of orbit spaces of proper group actions. In: II Iberoamerican conference on topology and its applications (Morelia, 1997). Topology Appl., vol. 98, no. 1–3, pp. 35–46 (1999)Google Scholar
  6. 6.
    Bahri, A., Li, Y.Y.: On a min–max procedure for the existence of a positive solution for certain scalar field equations in \(\mathbb{R}^{N}\). Rev. Mat. Iberoam. 6, 1–15 (1990)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bárcenas, N.: Mountain pass theorem with infinite discrete symmetry. Osaka J. Math. 53(2), 331–351 (2016)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bartsch, T.: Topological Methods for Variational Problems with Symmetries. Lecture Notes in Mathematics, vol. 1560. Springer, Berlin (1993)Google Scholar
  9. 9.
    Benci, V., Cerami, G.: Positive solutions of some nonlinear elliptic problems in exterior domains. Arch. Ration. Mech. Anal. 99(4), 283–300 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ratio. Mech. Anal. 82(4), 313–345 (1983)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Carvalho, J.S., Maia, L.A., Miyagaki, O.H.: A note on existence of antisymmetric solutions for a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 62(1), 67–86 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cerami, G.: Some nonlinear elliptic problems in unbounded domains. Milan J. Math. 74, 47–77 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cerami, G., Clapp, M.: Sign changing solutions of semilinear elliptic problems in exterior domains. Calc. Var. Partial Differ. Equ. 30(3), 353–367 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cerami, G., Molle, R.: Positive solutions for some Schrödinger equations having partially periodic potentials. J. Math. Anal. Appl. 359(1), 15–27 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cerami, G., Molle, R., Passaseo, D.: Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(1), 41–60 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cerami, G., Passaseo, D., Solimini, S.: Nonlinear scalar field equations: existence of a positive solution with infinitely many bumps. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(1), 23–40 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63(2), 233–248 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Clapp, M., Puppe, D.: Critical point theory with symmetries. J. Reine Angew. Math. 418, 1–29 (1991)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Clapp, M., Salazar, D.: Multiple sign changing solutions of nonlinear elliptic problems in exterior domains. Adv. Nonlinear Stud. 12(3), 427–443 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Clapp, M., Weth, T.: Multiple solutions of nonlinear scalar field equations. Commun. Partial Differ. Equ. 29, 1533–1554 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Coti Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbb{R}^{n}\). Commun. Pure Appl. Math. 45(10), 1217–1269 (1992)CrossRefzbMATHGoogle Scholar
  22. 22.
    tom Dieck, T.: Transformation Groups. de Gruyter Studies in Mathematics, vol. 8. Walter de Gruyter & Co, Berlin (1987)Google Scholar
  23. 23.
    Dold, A.: Lectures on Algebraic Topology. Die Grundlehren der mathematischen Wissenschaften. Band 200. Springer, New York (1972)Google Scholar
  24. 24.
    Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Esteban, M.J., Lions, P.-L.: Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. R. Soc. Edinb. Sect. A 93, 1–14 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fadell, E.R., Rabinowitz, P.H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45(2), 139–174 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^{N}\). In: Nachbin, L. (ed.) Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Stud, vol. 7a, pp. 369–402. Academic Press, New York (1981)Google Scholar
  28. 28.
    Husemoller, D.: Fibre Bundles, 2nd edn. Graduate Texts in Mathematics. Springer, New York (1975)Google Scholar
  29. 29.
    Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I and II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984). (223–283)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Molle, R.: Positive solutions for a nonlinear elliptic problem with strong lack of compactness. J. Lond. Math. Soc. 74(2), 441–452 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Palais, R.S.: On the existence of slices for actions of non-compact Lie groups. Ann. Math. 2(73), 295–323 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rabinowitz, P.H.: A Note on a Semilinear Elliptic Equation on \({\mathbb{R}}^{n}\). Nonlinear Analysis. Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., pp. 307–317. Pisa (1991)Google Scholar
  33. 33.
    Wei, J., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger equations in \(\mathbb{R}^{N}\). Calc. Var. Partial Differ. Equ. 37(3–4), 423–439 (2010)CrossRefzbMATHGoogle Scholar
  34. 34.
    Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston, Inc., Boston (1996)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoCoyoacánMexico

Personalised recommendations