Journal of Fixed Point Theory and Applications

, Volume 19, Issue 4, pp 3029–3051

# An inertial method for solving split common fixed point problems

• Duong Viet Thong
• Dang Van Hieu
Article

## Abstract

In this paper, we introduce a new algorithm which combines the Mann iteration and the inertial method for solving split common fixed point problems. The weak convergence of the algorithm is established under standard assumptions imposed on cost operators. As a consequence, we obtain weak convergence theorems for split variational inequality problems for inverse strongly monotone operators, and split common null point problems for maximal monotone operators. Finally, for supporting the convergence of the proposed algorithms we also consider several preliminary numerical experiments on a test problem.

## Keywords

Split common fixed point problem split feasibility problem split variational inequality problem split null point problem

## Mathematics Subject Classification

47H10 47J25 47H45 65J15

## Notes

### Acknowledgements

The authors are grateful to the anonymous referee for valuable suggestions which helped to improve the manuscript. The first author was partially supported by Vietnam Institute for Advanced Study in Mathematics (VIASM). The second author was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the project 101.01-2017.315.

## References

1. 1.
Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 9, 3–11 (2001)
2. 2.
Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)
3. 3.
Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. Euro. J. Comput. Optim. 4, 3–25 (2016)
4. 4.
Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)
5. 5.
Bot, R.I., Csetnek, E.R.: An inertial forward–backward–forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71, 519–540 (2016)
6. 6.
Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)
7. 7.
Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)
8. 8.
Bot, R.I., Csetnek, E.R.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 36, 951–963 (2015)
9. 9.
Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)
10. 10.
Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)
11. 11.
Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 18, 103–120 (2004)
12. 12.
Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)
13. 13.
Cegielski, A.: General method for solving the split common fixed point problem. J. Optim. Theory Appl. 165, 385–404 (2015)
14. 14.
Cegielski, A., Al-Musallam, F.: Strong convergence of a hybrid steepest descent method for the split common fixed point problem. Optimization 65, 1463–1476 (2016)
15. 15.
Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projection in a product space. Numer. Algorithms 8, 221–239 (1994)
16. 16.
Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)
17. 17.
Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)
18. 18.
Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)
19. 19.
Chen, C., Ma, S., Yang, J.: A general inertial proximal point algorithm for mixed variational inequality problem. SIAM J. Optim. 25, 2120–2142 (2015)
20. 20.
Dang, Y., Gao, Y.: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Probl. 27, 015007 (2011)
21. 21.
Dang, Y., Sun, J., Xu, H.: Inertial accelerated algorithms for solving a split feasibility problem. J. Ind. Manag. Optim. 13, 1383–1394 (2017)Google Scholar
22. 22.
Eslamian, M., Eslamian, P.: Strong convergence of a split common fixed point problem. Numer. Funct. Anal. Optim. 37, 1248–1266 (2016)
23. 23.
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)
24. 24.
Kraikaew, R., Saejung, S.: On split common fixed point problems. J. Math. Anal. Appl. 415, 513–524 (2014)
25. 25.
Maingé, P.E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 34, 876–887 (2008)
26. 26.
Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15, 67–79 (2007)
27. 27.
Maingé, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)
28. 28.
Maingé, P.E., Moudafi, A.: Convergence of new inertial proximal methods for DC programming. SIAM J. Optim. 19, 397–413 (2008)
29. 29.
Maingé, P.E.: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput. Math. Appl. 59, 74–79 (2010)
30. 30.
Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)
31. 31.
Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)
32. 32.
Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)
33. 33.
Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Probl. 26, 055007 (2010)
34. 34.
Moudafi, A., Elisabeth, E.: An approximate inertial proximal method using enlargement of a maximal monotone operator. Int. J. Pure Appl. Math. 5, 283–299 (2003)
35. 35.
Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)
36. 36.
Polyak, B.T.: Some methods of speeding up the convergence of iterarive methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)Google Scholar
37. 37.
Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)
38. 38.
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
39. 39.
Shehu, Y.: New convergence theorems for split common fixed point problems in Hilbert spaces. J. Nonlinear Convex Anal. 16, 167–181 (2015)
40. 40.
Shehu, Y., Cholamjiak, P.: Another look at the split common fixed point problem for demicontractive operators. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 110, 201–218 (2016)
41. 41.
Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and its Applications. Yokohama Publishers Inc., Yokohama (2000)
42. 42.
Tang, Y.C., Liu, L.W.: Several iterative algorithms for solving the split common fixed point problem of directed operators with applications. Optimization 65, 53–65 (2016)
43. 43.
Thong, D.V.: Viscosity approximation methods for solving fixed point problems and split common fixed point problems. J. Fixed Point Theory Appl. 19, 1481–1499 (2017)Google Scholar
44. 44.
Thong, D.V., Hieu, D.V.: An inertial subgradient extragradient method for variational inequality problems. Optimization (2017) (Revised)Google Scholar
45. 45.
Wang, F., Xu, H.K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)
46. 46.
Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)
47. 47.
Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)
48. 48.
Yang, Q.: The relaxed CQ algorithm for solving the problem split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)