Advertisement

Journal of Fixed Point Theory and Applications

, Volume 19, Issue 4, pp 3029–3051 | Cite as

An inertial method for solving split common fixed point problems

  • Duong Viet Thong
  • Dang Van Hieu
Article

Abstract

In this paper, we introduce a new algorithm which combines the Mann iteration and the inertial method for solving split common fixed point problems. The weak convergence of the algorithm is established under standard assumptions imposed on cost operators. As a consequence, we obtain weak convergence theorems for split variational inequality problems for inverse strongly monotone operators, and split common null point problems for maximal monotone operators. Finally, for supporting the convergence of the proposed algorithms we also consider several preliminary numerical experiments on a test problem.

Keywords

Split common fixed point problem split feasibility problem split variational inequality problem split null point problem 

Mathematics Subject Classification

47H10 47J25 47H45 65J15 

Notes

Acknowledgements

The authors are grateful to the anonymous referee for valuable suggestions which helped to improve the manuscript. The first author was partially supported by Vietnam Institute for Advanced Study in Mathematics (VIASM). The second author was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the project 101.01-2017.315.

References

  1. 1.
    Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 9, 3–11 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. Euro. J. Comput. Optim. 4, 3–25 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bot, R.I., Csetnek, E.R.: An inertial forward–backward–forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71, 519–540 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bot, R.I., Csetnek, E.R.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 36, 951–963 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 18, 103–120 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Cegielski, A.: General method for solving the split common fixed point problem. J. Optim. Theory Appl. 165, 385–404 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Cegielski, A., Al-Musallam, F.: Strong convergence of a hybrid steepest descent method for the split common fixed point problem. Optimization 65, 1463–1476 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projection in a product space. Numer. Algorithms 8, 221–239 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Chen, C., Ma, S., Yang, J.: A general inertial proximal point algorithm for mixed variational inequality problem. SIAM J. Optim. 25, 2120–2142 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Dang, Y., Gao, Y.: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Probl. 27, 015007 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Dang, Y., Sun, J., Xu, H.: Inertial accelerated algorithms for solving a split feasibility problem. J. Ind. Manag. Optim. 13, 1383–1394 (2017)Google Scholar
  22. 22.
    Eslamian, M., Eslamian, P.: Strong convergence of a split common fixed point problem. Numer. Funct. Anal. Optim. 37, 1248–1266 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)zbMATHGoogle Scholar
  24. 24.
    Kraikaew, R., Saejung, S.: On split common fixed point problems. J. Math. Anal. Appl. 415, 513–524 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Maingé, P.E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 34, 876–887 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15, 67–79 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Maingé, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Maingé, P.E., Moudafi, A.: Convergence of new inertial proximal methods for DC programming. SIAM J. Optim. 19, 397–413 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Maingé, P.E.: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput. Math. Appl. 59, 74–79 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Probl. 26, 055007 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Moudafi, A., Elisabeth, E.: An approximate inertial proximal method using enlargement of a maximal monotone operator. Int. J. Pure Appl. Math. 5, 283–299 (2003)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Polyak, B.T.: Some methods of speeding up the convergence of iterarive methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)Google Scholar
  37. 37.
    Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Shehu, Y.: New convergence theorems for split common fixed point problems in Hilbert spaces. J. Nonlinear Convex Anal. 16, 167–181 (2015)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Shehu, Y., Cholamjiak, P.: Another look at the split common fixed point problem for demicontractive operators. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 110, 201–218 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and its Applications. Yokohama Publishers Inc., Yokohama (2000)zbMATHGoogle Scholar
  42. 42.
    Tang, Y.C., Liu, L.W.: Several iterative algorithms for solving the split common fixed point problem of directed operators with applications. Optimization 65, 53–65 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Thong, D.V.: Viscosity approximation methods for solving fixed point problems and split common fixed point problems. J. Fixed Point Theory Appl. 19, 1481–1499 (2017)Google Scholar
  44. 44.
    Thong, D.V., Hieu, D.V.: An inertial subgradient extragradient method for variational inequality problems. Optimization (2017) (Revised)Google Scholar
  45. 45.
    Wang, F., Xu, H.K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)CrossRefzbMATHGoogle Scholar
  47. 47.
    Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Yang, Q.: The relaxed CQ algorithm for solving the problem split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Economics MathematicsNational Economics UniversityHanoiVietnam
  2. 2.Department of MathematicsCollege of Air ForceNhatrangVietnam

Personalised recommendations