Journal of Fixed Point Theory and Applications

, Volume 19, Issue 2, pp 1315–1363 | Cite as

Morse–Floer theory for superquadratic Dirac equations, I: relative Morse indices and compactness

  • Takeshi IsobeEmail author


In this paper and its sequel (Isobe in Morse–Floer theory for superquadratic Dirac equations, II: construction and computation of Morse–Floer homology, 2016), we study Morse–Floer theory for superquadratic Dirac functionals associated with a class of nonlinear Dirac equations on compact spin manifolds. We are interested in two topics: (i) relative Morse indices and its relation to compactness issues of critical points; (ii) construction and computation of the Morse–Floer homology and its application to the existence problem for solutions to nonlinear Dirac equations. In this part I, we focus on the topic (i). One of our main results is a compactness of critical points under the boundedness assumption of their relative Morse indices which is an analogue of the results of Bahri–Lions (Commun Pure Appl Math 45:1205–1215, 1992) and Angenent–van der Vorst (Math Z 231: 203–248, 1999) for Dirac functionals. To prove this, we give an appropriate definition of relative Morse indices for bounded solutions to \(\mathsf {D}_{g_{\mathbb {R}^{m}}}\psi =|\psi |^{p-1}\psi \) on \(\mathbb {R}^{m}\). We show that for \(m\ge 3\) and \(1<p<\frac{m+1}{m-1}\), the relative Morse index of any non-trivial bounded solution to that equation is \(+\infty \). We also give some useful properties of the relative Morse indices of Dirac functionals which will be used in the study of the topic (ii) above.


Relative Morse index Compactness Dirac equations 

Mathematics Subject Classification

35Q41 37B30 57R58 58E05 



This work was supported by JSPS KAKENHI Grant Numbers 22540222, 15K04947.


  1. 1.
    Abbondandolo, A.: A new cohomology for the Morse theory of strongly indefinite functionals on Hilbert space. Top. Methods Nonlinear Anal. 9, 325–382 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abbondandolo, A.: Morse Theory for Hamiltonian Systems, vol. 425. CRC Press, Boca Raton (2001)zbMATHGoogle Scholar
  3. 3.
    Abbondandolo, A., Majer, P.: Morse homology on Hilbert spaces. Commun. Pure Appl. Math. 54, 689–760 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abbondandolo, A., Majer, P.: Ordinary differential operators in Hilbert spaces and Fredholm pairs. Math. Z. 243, 525–562 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Abbondandolo, A., Majer, P.: A Morse complex for infinite dimensional manifolds—part I. Adv. Math. 197, 321–410 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Abbondandolo, A., Majer, P.: Lectures on the Morse Complex for Infinite-dimensional Manifolds. Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology. Springer, Netherlands (2006)zbMATHGoogle Scholar
  7. 7.
    Adams, R.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  8. 8.
    Ammann, B.: A Variational Problem in Conformal Spin Geometry. Universität Hamburg, Habilitationsschift (2003)zbMATHGoogle Scholar
  9. 9.
    Ammann, B.: The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions. Commun. Anal. Geom. 17, 429–479 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ammann, B., Ginoux, N.: Dirac-harmonic maps from index theory. Calc. Var. 47, 739–762 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ammann, B., Ginoux, N.: Examples of Dirac-harmonic maps after Jost–Mo–Zhu. (2011). (preprint)
  12. 12.
    Ammann, B., Moroianu, A., Moroianu, S.: The Cauchy problems for Einstein metrics and parallel spinors. Commun. Math. Phys. 320, 173–198 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Angenent, S., van der Vorst, R.: A superquadratic indefinite elliptic system and its Morse–Conley–Floer homology. Math. Z. 231, 203–248 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Angenent, S., van der Vorst, R.: A priori bounds and renormalized Morse indices of solutions of an elliptic system. In: Ann. Inst. H. Poincaré, Anal. Non Linéaire, vol. 17, pp. 277–306 (2000)Google Scholar
  15. 15.
    Audin, M., Damian, M.: Morse Theory and Floer Homology. Universitext, Springer, Berlin (2014)CrossRefzbMATHGoogle Scholar
  16. 16.
    Bahri, A., Lions, P.L.: Solutions of superlinear elliptic equations and their Morse indices. Commun. Pure Appl. Math. 45, 1205–1215 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Booss-Bavnbek, B., Marcolli, M.: Bai-Ling Wang: weak UCP and perturbed monopole equations. Int. J. Math. 13, 987–1008 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Chen, Q., Jost, J., Wang, G.: Liouville theorems for Dirac-harmonic maps. J. Math. Phys. 48, 113517 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, Q., Jost, J., Li, J., Wang, G.: Dirac-harmonic maps. Math. Z. 254, 409–432 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Conley, C., Zehnder, E.: Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure Appl. Math. 37, 207–253 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Daniele, G.: On the spectral flow for paths of essentially hyperbolic bounded operators on Banach spaces. arXiv preprint. arXiv:0806.4094 (2008)
  22. 22.
    Ding, Y.: Variational methods for strongly indefinite problems. In: Interdisciplinary Mathematical Sciences, vol. 7. World Scientific, Hackensack (2007)Google Scholar
  23. 23.
    Duistermaat, J.J.: On the Morse index in the calculus of variations. Adv. Math. 21, 173–195 (1976)CrossRefzbMATHGoogle Scholar
  24. 24.
    Esteban, M.J., Sèrè, E.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171, 323–350 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Floer, A.: The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. 41, 775–813 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Floer, A.: A relative Morse index for the symplectic action. Commun. Pure Appl. Math. 41, 393–407 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Floer, A.: Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120, 575–611 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Floer, A.: An instanton-invariant for 3-manifolds. Commun. Math. Phys. 118, 215–240 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Friedrich, T.: Dirac operators in Riemannian geometry. In: Graduate Studies in Mathematics, vol. 25 (2000)Google Scholar
  30. 30.
    Ginoux, N.: The Dirac spectrum. In: Lecture Notes in Math, vol. 1976. Springer, Berlin (2009)Google Scholar
  31. 31.
    Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Isobe, T.: Existence results for solutions to nonlinear Dirac equations on compact spin manifolds. Manuscr. Math. 135, 329–360 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Isobe, T.: Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds. J. Funct. Anal. 260, 253–307 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Isobe, T.: On the existence of nonlinear Dirac-geodesics on compact manifolds. Calc. Var. 43, 83–121 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Isobe, T.: A perturbation method for spinorial Yamabe type equations on \(S^m\) and its application. Math. Ann. 355, 1255–1299 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Isobe, T.: Spinorial Yamabe type equations on \(S^{3}\) via Conley index. Adv. Nonlinear Stud. 15, 39–60 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Isobe, T.: Morse–Floer Theory for Superquadratic Dirac Equations, II: Construction and Computation of Morse–Floer Homology. J. Fixed Point Theory Appl. (2016)Google Scholar
  38. 38.
    Jost, J.: Geometry and Physics. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  39. 39.
    Jost, J., Mo, X., Zhu, M.: Some explicit constructions of Dirac-harmonic maps. J. Geom. Phys. 59, 1512–1527 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kryszewski, W., Szulkin, A.: An infinite dimensional Morse theory with applications. Trans. Am. Math. Soc. 349, 3181–3234 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lawson, H.B., Michelson, M.L.: Spin Geometry. Princeton University Press, Princeton (1989)Google Scholar
  42. 42.
    Lesch, M.: The uniqueness of the spectral flow on spaces of unbounded self-adjoint Fredholm operators. In: Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds. Contemp. Math. vol. 366, pp. 193–224 (2005)Google Scholar
  43. 43.
    Maalaoui, A.: Rabinowitz–Floer homology for superquadratic Dirac equations on compact spin manifolds. J. Fixed Point Theory Appl. 13, 175–199 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Maalaoui, A., Martino, V.: The Rabinowitz–Floer homology for a class of semilinear problems and applications. J. Funct. Anal. 269, 4006–4037 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems. In: Applied Mathematical Sciences, vol. 74. Springer, New York (1989)Google Scholar
  46. 46.
    Raulot, S.: A Sobolev-like inequality for the Dirac operator. J. Funct. Anal. 26, 1588–1617 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Robbin, J., Salamon, D.: The spectral flow and the Maslov index. Bull. Lond. Math. Soc. 27, 1–33 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Salamon, D.: Lectures on Floer Homology. Symplectic Geometry and Topology (Park City, UT, 1997), vol. 7, pp. 143–229. IAS/Park City Math, Ser. (1999)Google Scholar
  49. 49.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  50. 50.
    Szulkin, A.: Cohomology and Morse theory for strongly indefinite functionals. Math. Z. 209, 375–418 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Taylor, M.E.: Partial Differential Equations, Part I-Part III. Springer, New York (2011)Google Scholar
  52. 52.
    Thaller, B.: The Dirac Equations. Springer, Berlin (2010)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Graduate School of Science and EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations