Nonautonomous and non periodic Schrödinger equation with indefinite linear part

  • L. A. Maia
  • J. C. Oliveira Junior
  • R. Ruviaro


The existence of solution of the nonlinear Schrödinger equation
$$\begin{aligned} \begin{array}{lc} -\Delta u + V(x) u = f(x,u),&\end{array} \end{aligned}$$
is stablished in \(\mathbb {R}^N\), where V changes sign and f is an asymptotically linear function at infinity, with V and f non periodic in x. Spectral theory, a classical linking theorem and interaction between translated solutions of the problem at infinity are employed.


Asymptotically linear Linking theorem Spectral theory 

Mathematics Subject Classification

35J20 35J60 35Q55 



The authors thank Professor Charles A. Stuart for elucidating many doubts in the spectral theory employed in the development of this work.


  1. 1.
    Ackermann, N., Clapp, M., Pacella, F.: Alternating sign multibump solutions of nonlinear elliptic equations in expanding tubular domains. Commun. Partial Differ. Equ. 38(5), 751–779 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Azzollini, A., Pomponio, A.: On the Schrödinger equation in \(\mathbb{R}^N\) under the effect of a general nonlinear term. Indiana Univ. Math. J. 58, 1361–1378 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cerami, G.: Un criterio di ezistenza per i punti critici su varietà illimitate. Rend. Accad. Sci. Lett. Inst. Lombardo 112, 332–336 (1978)Google Scholar
  5. 5.
    Costa, D.G., Tehrani, H.: Existence and multiplicity results for a class of Schrödinger equations with indefinite nonlinearities. Adv. Differ. Equ. 8, 1319–1340 (2003)zbMATHGoogle Scholar
  6. 6.
    Egorov, Y., Kondratiev, V.: On spectral theorey of elliptic operators. Birkhäuser, Basel (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \(\mathbb{R}^N\). Proc. R. Soc. Edinburgh Sect. A 129, 787–809 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jeanjean, L., Tanaka, K.: A positive solution for an asymptotically linear elliptic problem on \(\mathbb{R}^N\) autonomous at infinity. ESAIM Control Optim. Calc. Var. 7, 597–614 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kryszewski, W., Szulkin, A.: Generalized linking theorem with an application to semilinear Schrödinger equations. Adv. Differ. Equ. 3, 441–472 (1998)zbMATHGoogle Scholar
  10. 10.
    Li, G., Szulkin, A.: An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math. 4, 763–776 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, G., Wang, C.: The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition. Annales Academiae Scientiarum Fennicae 36, 461–480 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Parts I and II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109–145 and 223–283 (1984)Google Scholar
  13. 13.
    Maia, L.A, Oliveira Junior, J.C., Ruviaro, R.: A non periodic and asymptotically linear indefinite variational problem in \({\mathbb{R}^N}\), online Indiana University Mathematics Journal (2015)Google Scholar
  14. 14.
    Pankov, A.A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rabinowitz, P.H.: Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 215–223 (1978)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Stuart, C.A.: An introduction to elliptic equation in \({\mathbb{R}^N}\), Trieste Notes (1998)Google Scholar
  17. 17.
    Stuart, C.A., Zhou, H.S.: Applying the mountain pass theorem to an asymptotically linear elliptic equation on \(\mathbb{R}^N\). Commun. Partial Differ. Equ. 24, 1731–1758 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Func. Anal. 257, 3802–3822 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • L. A. Maia
    • 1
  • J. C. Oliveira Junior
    • 2
  • R. Ruviaro
    • 1
  1. 1.Departamento de MatemáticaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Universidade Federal do TocantinsPalmasBrazil

Personalised recommendations