Advertisement

Journal of Fixed Point Theory and Applications

, Volume 17, Issue 4, pp 693–702 | Cite as

Relation-theoretic contraction principle

  • Aftab Alam
  • Mohammad ImdadEmail author
Article

Abstract

In this paper, we present yet another new and novel variant of classical Banach contraction principle on a complete metric space endowed with a binary relation which, under universal relation, reduces to Banach contraction principle. In process, we observe that various kinds of binary relations, such as partial order, preorder, transitive relation, tolerance, strict order, symmetric closure, etc., utilized by earlier authors in several well-known metrical fixed point theorems can be weakened to the extent of an arbitrary binary relation.

Keywords

Complete metric spaces binary relations contraction mappings 

Mathematics Subject Classification

47H10 54H25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banach S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 3, 133–181 (1922)zbMATHGoogle Scholar
  2. 2.
    Ben-El-Mechaiekh H.: The Ran–Reurings fixed point theorem without partial order: A simple proof. J. Fixed Point Theory Appl. 16, 373–383 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Charoensawan, Tripled coincidence point theorems for a φ-contractive mapping in a complete metric space without the mixed g-monotone property. Fixed Point Theory Appl. 2013 (2013), doi: 10.1186/1687-1812-2013-252, 16 pp.
  4. 4.
    V. Flaška, J. Ježek, T. Kepka and J. Kortelainen, Transitive closures of binary relations. I. Acta Univ. Carolin. Math. Phys. 48 (2007), 55–69.Google Scholar
  5. 5.
    S. Ghods, M. E. Gordji, M. Ghods and M. Hadian, Comment on “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces” [Lakshmikantham and Ćirić, Nonlinear Anal. TMA 70 (2009) 4341–4349]. J. Comput. Anal. Appl. 14 (2012), 958–966.Google Scholar
  6. 6.
    B. Kolman, R. C. Busby and S. Ross, Discrete Mathematical Structures. 3rd ed., PHI Pvt. Ltd., New Delhi, 2000.Google Scholar
  7. 7.
    M. A. Kutbi, A. Roldan, W. Sintunavarat, J. Martinez-Moreno and C. Roldan, F-closed sets and coupled fixed point theorems without the mixed monotone property. Fixed Point Theory Appl. 2013 (2013), doi: 10.1186/1687-1812-2013-330, 11 pp.
  8. 8.
    S. Lipschutz, Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics. McGraw–Hill, New York, 1964.Google Scholar
  9. 9.
    R. D. Maddux, Relation Algebras. Stud. Logic Found. Math. 150, Elsevier B. V., Amsterdam, 2006.Google Scholar
  10. 10.
    Nieto J. J., Rodríguez-López R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223–239 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) 23 (2007), 2205–2212.Google Scholar
  12. 12.
    A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2004), 1435–1443.Google Scholar
  13. 13.
    B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal. 13 (2012), 82–97.Google Scholar
  14. 14.
    Skala H. L.: Trellis theory. Algebra Universalis 1, 218–233 (1971)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Stouti A., Maaden A.: Fixed points and common fixed points theorems in pseudo-ordered sets. Proyecciones 32, 409–418 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Turinici, Product fixed points in ordered metric spaces. arXiv:1110.3079v1, 2011.
  17. 17.
    Turinici M.: Ran-Reurings fixed point results in ordered metric spaces. Libertas Math. 31, 49–55 (2011)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Turinici M.: Nieto-Lopez theorems in ordered metric spaces. Math. Student 81, 219–229 (2012)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Turinici M.: Linear contractions in product ordered metric spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 59, 187–198 (2013)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations