Journal of Fixed Point Theory and Applications

, Volume 17, Issue 3, pp 455–475 | Cite as

Generalized metric spaces: A survey

  • M. A. Khamsi


Banach’s contraction mapping principle is remarkable in its simplicity, yet it is perhaps the most widely applied fixed point theorem in all of analysis with special applications to the theory of differential and integral equations. Because the underlined space of this theorem is a metric space, the theory that developed following its publication is known as the metric fixed point theory. Over the last one hundred years, many people have tried to generalize the definition of a metric space. In this paper, we survey the most popular generalizations and we discuss the recent uptick in some generalizations and their impact in metric fixed point theory.

Mathematics Subject Classification

Primary 47H09 Secondary 46B20 47H10 47E10 


Banach contraction principle cone metric spaces fixed point generalized metric spaces Menger spaces b-metric spaces G-metric spaces modular metric spaces partially ordered metric spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Abdou and M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces. Fixed Point Theory Appl. 2013 (2013), doi: 10.1186/1687-1812-2013-163.
  2. 2.
    A. A. Abdou and M. A. Khamsi, On the fixed points of nonexpansive mappings in modular metric spaces. Fixed Point Theory Appl. 2013 (2013), doi: 10.1186/1687-1812-2013-229.
  3. 3.
    Agarwal R. P.: Contraction and approximate contraction with an application to multipoint boundary value problems. J. Comput. Appl. Math. 9, 315–325 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Aronszajn N., Panitchpakdi P.: Extensions of uniformly continuous transformations and hyperconvex metric spaces. Pacific J. Math. 6, 405–439 (1956)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Banaschewski B., Bruns G.: Categorical characterization of the MacNeille completion. Arch. Math. (Basel) 18, 369–377 (1967)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. R. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York, 1974.Google Scholar
  7. 7.
    V. V. Chistyakov, Modular metric spaces. I. Basic concepts. Nonlinear Anal. 72 (2010), 1–14.Google Scholar
  8. 8.
    V. V. Chistyakov, Modular metric spaces. II. Application to superposition operators. Nonlinear Anal. 72 (2010), 15–30.Google Scholar
  9. 9.
    H. Covitz and S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11.Google Scholar
  10. 10.
    S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fiz. Univ. Modena 46 (1998), 263–276.Google Scholar
  11. 11.
    H. Dehghan, M. Eshaghi Gordji and A. Ebadian, Comment on ‘Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory and Applications, doi: 10.1186/1687-1812-2011-93, 20 pages’. Fixed Point Theory Appl. 2012 (2012), doi: 10.1186/1687-1812-2012-144.
  12. 12.
    Dhage B.C.: Generalised metric spaces and mappings with fixed point. Bull. Calcutta Math. Soc. 84, 329–336 (1992)zbMATHMathSciNetGoogle Scholar
  13. 13.
    B. C. Dhage, Generalized metric spaces and topological structure. I. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 46 (2000), 3–24.Google Scholar
  14. 14.
    B. C. Dhage, On generalized metric spaces and topological structure. II. Pure. Appl. Math. Sci. 40 (1994), 37–41.Google Scholar
  15. 15.
    B. C. Dhage, On continuity of mappings in D-metric spaces. Bull. Calcutta Math. Soc. 86 (1994), 503–508.Google Scholar
  16. 16.
    B. C. Dhage, Generalized D-metric spaces and multi-valued contraction mappings. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 44 (1998), 179–200.Google Scholar
  17. 17.
    L. Diening, Theoretical and numerical results for electrorheological fluids. Ph.D. Thesis, University of Freiburg, Germany, 2002.Google Scholar
  18. 18.
    W.-S. Du, A note on cone metric fixed point theory and its equivalence. Nonlinear Anal. 72 (2010), 2259–2261.Google Scholar
  19. 19.
    M. Escardó, Synthetic topology: of data types and classical spaces. Electron. Notes Theor. Comput. Sci. 87 (2004), 21–156.Google Scholar
  20. 20.
    M. Fitting, Metric methods: Three examples and a theorem. J. Logic Programming 21 (1994), 113–127.Google Scholar
  21. 21.
    M. Fitting, Fixpoint semantics for logic programming: A survey. Theoret. Comput. Sci. 278 (2002), 25–51.Google Scholar
  22. 22.
    M. Fréchet, Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22 (1906), 1–72.Google Scholar
  23. 23.
    S. Gähler, 2-metriche räume und ihre topologische struktur. Math. Nachr. 26 (1963), 115–148.Google Scholar
  24. 24.
    S. Gähler, Zur geometric 2-metriche raüme. Rev. Roumaine Math. Pures Appl. 40 (1966), 664–669.Google Scholar
  25. 25.
    K. S. Ha, Y. J. Cho and A. White, Strictly convex and strictly 2-convex 2- normed spaces. Math. Japon. 33 (1988), 375–384.Google Scholar
  26. 26.
    P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values. Potential Anal. 25 (2006), 205–222.Google Scholar
  27. 27.
    F. Hausdorff, Grundzüge der Mengenlehre. Leipzig, 1914.Google Scholar
  28. 28.
    J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. The Clarendon Press, Oxford University Press, New York, 1993.Google Scholar
  29. 29.
    L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332 (2007), 1468–1476.Google Scholar
  30. 30.
    S. Janković, Z. Kadelburg and S. Radenović, On cone metric spaces: A survey. Nonlinear Anal. 74 (2011), 2591–2601.Google Scholar
  31. 31.
    E. Jawhari, M. Pouzet and D. Misane, Retracts: Graphs and ordered sets from the metric point of view. In: Combinatorics and Ordered Sets (Arcata, Calif., 1985), Contemp. Math. 57, Amer. Math. Soc., Providence, RI, 1986, 175–226.Google Scholar
  32. 32.
    Z. Kadelburg, S. Radenović and V. Rakočević, A note on the equivalence of some metric and cone metric fixed point results. Appl. Math. Lett. 24 (2011), 370–374.Google Scholar
  33. 33.
    M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings. Fixed Point Theory Appl. 2010 (2010), doi: 10.1155/2010/315398.
  34. 34.
    M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory. John Wiley, New York, 2001.Google Scholar
  35. 35.
    M. A. Khamsi, W. K. Kozlowski and S. Reich, Fixed point theory in modular function spaces. Nonlinear Anal. 14 (1990), 935–953.Google Scholar
  36. 36.
    M. A. Khamsi, V. Kreinovich and D. Misane, A new method of proving the existence of answer sets for disjunctive logic programs: A metric fixed point theorem for multivalued mappings. In: Proceedings of the Workshop on Logic Programming with Incomplete Information (Vancouver, B.C., Canada, 1993), C. Baral and M. Gelfond, eds., University of British Columbia, Vancouver, BC, 1993, 58–73Google Scholar
  37. 37.
    L. Kantorovich, The method of successive approximations for functional equations. Acta Math. 71 (1939), 63–97.Google Scholar
  38. 38.
    W. A. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces. Springer, Cham, 2014.Google Scholar
  39. 39.
    B. Knaster, Un théorème sur les fonctions d’ensembles. Ann. Soc. Polon. Math. 6 (1928), 133–134.Google Scholar
  40. 40.
    W. M. Kozlowski, Notes on modular function spaces. I. Comment. Math. 28 (1988), 91–104.Google Scholar
  41. 41.
    W. M. Kozlowski, Notes on modular function spaces. II. Comment. Math. 28 (1988), 105–120.Google Scholar
  42. 42.
    W. M. Kozlowski, Modular Function Spaces. Series of Monographs and Textbooks in Pure and Applied Mathematics 122, Dekker, New York, 1988.Google Scholar
  43. 43.
    G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations. Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics 27, Pitman, Boston, 1985.Google Scholar
  44. 44.
    F. W. Lawvere, Metric spaces, generalized logic, and closed categories. Repr. Theory Appl. Categ. 1 (2002), 1–37.Google Scholar
  45. 45.
    S. G. Matthews, Partial Metric Topology. In: Papers on General Topology and Applications (Flushing, NY, 1992), Ann. New York Acad. Sci. 728, New York Acad. Sci., New York, 1994, 183–197.Google Scholar
  46. 46.
    C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011 (2011), doi: 10.1186/1687-1812-2011-93.
  47. 47.
    C. Mongkolkeha, W. Sintunavarat and P. Kumam, Correction: Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory Appl. 2011, 2011:93. Fixed Point Theory Appl. 2012 (2012), doi: 10.1186/1687-1812-2012-103.
  48. 48.
    J. Musielak, Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034, Springer, Berlin, 1983.Google Scholar
  49. 49.
    Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces. In: Proceedings of the Internatinal Conference on Fixed Point Theorey and Applications (Valencia, Spain, 2003), Yokohama Publ., Yokohama, 2004, 189–198.Google Scholar
  50. 50.
    Z. Mustafa and B. Sims, A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7 (2006), 289–297.Google Scholar
  51. 51.
    Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009 (2009), doi: 10.1155/2009/917175.
  52. 52.
    H. Nakano, Modulared Semi-Ordered Linear Spaces. Maruzen, Tokyo, 1950.Google Scholar
  53. 53.
    J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223–239.Google Scholar
  54. 54.
    W. Orlicz,Collected Papers. Part I, II. PWN—Polish Scientific Publishers, Warsaw, 1988.Google Scholar
  55. 55.
    A. Perov and A. Kibenko, On a certain general method for investigation of boundary value problems. Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 249–264.Google Scholar
  56. 56.
    A. Quilliot, Homomorphismes, points fixes, retractions et jeux de poursuite dans les graphes, les ensembles ordonnes et les espaces metriques. Thèse de Doctorat d’État, Paris, 1983.Google Scholar
  57. 57.
    A. C. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2004), 1435–1443.Google Scholar
  58. 58.
    D. Reem and S. Reich, Zone and double zone diagrams in abstract spaces. Colloq. Math. 115 (2009), 129–145.Google Scholar
  59. 59.
    S. Reich, Fixed points of contractive functions. Boll. Unione Mat. Ital. 5 (1972), 26–42.Google Scholar
  60. 60.
    M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math. 1748, Berlin, Springer, 2000.Google Scholar
  61. 61.
    B. Rzepecki, On fixed point theorems of Maia type. Publ. Inst. Math. (Beograd) (N.S.) 28 (1980), 179–186.Google Scholar
  62. 62.
    A. K. Seda and P. Hitzler, Generalized distance functions in the theory of computation. Computer Journal 53 (2010), 443–464.Google Scholar
  63. 63.
    R. C. Sine, On linear contraction semigroups in sup norm spaces. Nonlinear Anal. 3 (1979), 885–890.Google Scholar
  64. 64.
    P. Soardi, Existence of fixed points of nonexpansive mappings in certain Banach lattices. Proc. Amer. Math. Soc. 73 (1979), 25–29.Google Scholar
  65. 65.
    L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology. Springer, New York, 1978.Google Scholar
  66. 66.
    A. Tarski, A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285–309.Google Scholar
  67. 67.
    M. Urabe, An existence theorem for multi-point boundary value problems. Funkcial. Ekvac. 9 (1966), 43–60.Google Scholar
  68. 68.
    W. A. Wilson, On semi-metric spaces. Amer. J. Math. 53 (1931), 361–373.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Mathematical ScienceThe University of Texas at El PasoEl PasoUSA
  2. 2.Department of Mathematics and StatisticsKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations