Journal of Fixed Point Theory and Applications

, Volume 17, Issue 3, pp 495–505 | Cite as

On local fixed or periodic point properties

Open Access
Article

Abstract

A space X has the local fixed point property LFPP (resp., local periodic point property LPPP) if it has an open basis \({\mathcal{B}}\) such that, for each \({B \in \mathcal{B}}\), the closure \({\overline{B}}\) has the fixed (resp., periodic) point property. Weaker versions wLFPP, wLPPP are also considered and examples of metric continua that distinguish all these properties are constructed. We show that for planar or one-dimensional locally connected metric continua the properties are equivalent.

Keywords

Local fixed point property local periodic point property locally connected continuum 

Mathematics Subject Classification

Primary 37B45 Secondary 54F15 

References

  1. 1.
    K. Borsuk, Theory of Retracts. PWN-Polish Scientific Publishers, Warsaw, 1967.Google Scholar
  2. 2.
    Cook H.: Continua which admit only the identity mapping onto non-degenerate subcontinua. Fund. Math. 60, 241–249 (1967)MATHMathSciNetGoogle Scholar
  3. 3.
    R. Engelking, Theory of Dimensions, Finite and Infinite. Heldermann Verlag, Lemgo, 1995.Google Scholar
  4. 4.
    A. Granas and J. Dugundji, Fixed Point Theory. Springer-Verlag, New York, 2003.Google Scholar
  5. 5.
    A. Illanes and S. B. Nadler, Jr., Hyperspaces: Fundamentals and Recent Advances. Monographs and Textbooks in Pure and Applied Math. 216, Marcel Dekker, New York, 1999.Google Scholar
  6. 6.
    P. Krupski, K. Omiljanowski and K. Ungeheuer, Chain recurrent sets of generic mappings on compact spaces. Preprint, arXiv:1312.7324, 2013.
  7. 7.
    K. Kuratowski, Topology. Vol. II. Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw, 1968.Google Scholar
  8. 8.
    T. Maćkowiak, Singular arc-like continua. Dissertationes Math. (Rozprawy Mat.) 257 (1986), 1–40.Google Scholar
  9. 9.
    S. Mazurkiewicz, Sur les continus indécomposables. Fund. Math. 10 (1927), 305–310.MATHGoogle Scholar
  10. 10.
    R. L. Wilder, Topology of Manifolds. Amer. Math. Soc. Colloq. Publ. 32, Amer. Math. Soc., New York, 1949.Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Instituto de MatemáticasUniversidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaMéxicoMexico
  2. 2.Institute of MathematicsUniversity of WrocławWrocławPoland

Personalised recommendations