Borderline gradient continuity of minima

Article

Abstract

The gradient of any local minimiser of functionals of the type \({w \mapsto \int_{\Omega}{f(x, w, Dw)}dx + \int_{\Omega}{w\mu}dx}\), where f has p-growth, p >  1, and \({\Omega \subset \mathbb{R}^{n}}\), is continuous provided that the optimal Lorentz space condition \({\mu \in L(n, 1)}\) is satisfied and \({x \rightarrow f(x, \cdot)}\) is suitably Dini continuous.

Keywords

Nondifferentiable functionals gradient continuity Lorentz spaces 

Mathematics Subject Classification

Primary 49N60 Secondary 35J20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Brezis, N. Fusco and C. Sbordone, Integrability for the Jacobian of orientation preserving mappings. J. Funct. Anal. 115 (1993), 425–431.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5 (1980), 773–789.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    A. Cianchi and V. Maz’ya, Global Lipschitz regularity for a class of quasilinear elliptic equations. Comm. Partial Differential Equations 36 (2011), 100–133.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    A. Cianchi and V. Maz’ya, Global boundedness of the gradient for a class of nonlinear elliptic systems. Arch. Ration. Mech. Anal. 212 (2014), 129–177.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    A. Cianchi and V. Maz’ya, Global gradient estimates in elliptic problems under minimal data and domain regularity. Comm. Pure Appl. Anal. 14 (2015), 285–311.Google Scholar
  6. 6.
    B. Dacorogna, Direct Methods in the Calculus of Variations. 2nd ed. Appl. Math. Sci. 78, Springer, New York, 2008.Google Scholar
  7. 7.
    E. DiBenedetto, \({C^{1+\alpha}}\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983), 827–850.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 1361–1396.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials. Amer. J. Math. 133 (2011), 1093–1149.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    N. Fusco and J. Hutchinson, Partial regularity for minimisers of certain functionals having nonquadratic growth. Ann. Mat. Pura Appl. (4) 155 (1989), 1–24.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31–46.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    M. Giaquinta and E. Giusti, Differentiability of minima of nondifferentiable functionals. Invent. Math. 72 (1983), 285–298.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    M. Giaquinta and E. Giusti, Sharp estimates for the derivatives of local minima of variational integrals. Boll. Unione Mat. Ital. A (6) 3 (1984), 239–248.MATHMathSciNetGoogle Scholar
  14. 14.
    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. 224, Springer-Verlag, Berlin, 1977.Google Scholar
  15. 15.
    E. Giusti, Direct Methods in the Calculus of Variations. World Scientific, River Edge, NJ, 2003.CrossRefMATHGoogle Scholar
  16. 16.
    C. Hamburger, Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. 431 (1992), 7–64.MATHMathSciNetGoogle Scholar
  17. 17.
    G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. Reprint of the 1952 edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988.Google Scholar
  18. 18.
    T. Jin, V. Maz’ya and J. Van Schaftingen, Pathological solutions to elliptic problems in divergence form with continuous coefficients. C. R. Math. Acad. Sci. Paris 347 (2009), 773–778.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 19 (1992), 591–613.MATHGoogle Scholar
  20. 20.
    T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172 (1994), 137–161.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    J. Kristensen and G. Mingione, The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006), 331–398.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    J. Kristensen and G. Mingione, Boundary regularity in variational problems. Arch. Ration. Mech. Anal. 198 (2010), 369–455.CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207 (2013), 215–246.CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    T. Kuusi and G. Mingione, Riesz potentials and nonlinear parabolic equations. Arch. Ration. Mech. Anal. 212 (2014), 727–780.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    T. Kuusi and G. Mingione, A nonlinear Stein theorem. Calc. Var. Partial Differential Equations 51 (2014), 45–86.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    T. Kuusi and G. Mingione, Guide to nonlinear potential estimates. Bull. Math. Sci. 4 (2014), 1–82.CrossRefMathSciNetGoogle Scholar
  27. 27.
    J. J. Manfredi, Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations. PhD thesis, University of Washington, St. Louis, 1986.Google Scholar
  28. 28.
    J. J. Manfredi, Regularity for minima of functionals with p-growth. J. Differential Equations 76 (1998), 203–212.CrossRefMathSciNetGoogle Scholar
  29. 29.
    V. G. Maz’ya and V. P. Khavin, Non-linear potential theory. Russian Math. Surveys 27 (1972), 71–148.CrossRefGoogle Scholar
  30. 30.
    G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006), 355–426.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    G. Mingione, Gradient potential estimates. J. Eur. Math. Soc. (JEMS) 13 (2011), 459–486.MATHMathSciNetGoogle Scholar
  32. 32.
    E. M. Stein, Editor’s note: The differentiability of functions in \({\mathbb{R}^{n}}\). Ann. of Math. (2) 113 (1981), 383–385.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden
  2. 2.Institute of MathematicsAalto UniversityAaltoFinland
  3. 3.Dipartimento di Matematica e InformaticaUniversità di ParmaParmaItaly

Personalised recommendations