Translated points and Rabinowitz Floer homology

  • Peter Albers
  • Will J. MerryEmail author


We prove that if a contact manifold admits an exact filling, then every local contactomorphism isotopic to the identity admits a translated point in the interior of its support, in the sense of Sandon [Internat. J. Math. 23 (2012), 1250042]. In addition, we prove that if the Rabinowitz Floer homology of the filling is nonzero, then every contactomorphism isotopic to the identity admits a translated point, and if the Rabinowitz Floer homology of the filling is infinite dimensional, then every contactomorphism isotopic to the identity has either infinitely many translated points, or a translated point on a closed leaf. Moreover, if the contact manifold has dimension greater than or equal to 3, the latter option generically does not happen. Finally, we prove that a generic compactly supported contactomorphism on \({\mathbb{R}^{2n+1}}\) has infinitely many geometrically distinct iterated translated points all of which lie in the interior of its support.

Mathematics Subject Classification

53D40 37J10 58J05 


Rabinowitz Floer homology leafwise intersections translated points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AS09.
    Abbondandolo A., Schwarz M.: Estimates and computations in Rabinowitz-Floer homology. J. Topol. Anal. 1, 307–405 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. AF12b.
    Albers P., Frauenfelder U.: A variational approach to Givental’s nonlinear Maslov index. Geom. Funct. Anal. 22, 1033–1050 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. AF12a.
    Albers P., Frauenfelder U.: Infinitely many leaf-wise intersections on cotangent bundles. Expo. Math. 30, 168–181 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. AF10a.
    Albers P., Frauenfelder U.: Leaf-wise intersections and Rabinowitz Floer homology. J. Topol. Anal. 2, 77–98 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. AF12c.
    P. Albers and U. Frauenfelder, Rabinowitz Floer homology: A survey. In: Global Differential Geometry 17, C. Bär et al. (eds.), Springer, Berlin, 2012, 437–461.Google Scholar
  6. Che96.
    Yu.V.Chekanov,Critical points of quasifunctions, and generating families of Legendrian manifolds. Funktsional. Anal. i Prilozhen. 30 (1996), 56–69, 96.Google Scholar
  7. CvKS09.
    Yu.V.Chekanov, O. van Koert and F. Schlenk, Minimal atlases of closed contact manifolds. In: New Perspectives and Challenges in Symplectic Field Theory, CRM Proc. Lecture Notes 49, Amer. Math. Soc., Providence, RI, 2009, 73–112.Google Scholar
  8. CF09.
    Cieliebak K., Frauenfelder U.: A Floer homology for exact contact embeddings. Pacific J. Math. 293, 251–316 (2009)MathSciNetCrossRefGoogle Scholar
  9. CFO10.
    Cieliebak K., Frauenfelder U., Oancea A.: Rabinowitz Floer homology and symplectic homology. Ann. Sci. Éc. Norm. Supér. 4(43), 957–1015 (2010)MathSciNetGoogle Scholar
  10. Kan10.
    Kang J.: Survival of infinitely many critical points for the Rabinowitz action functional. J. Mod. Dyn. 4, 733–739 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. San12a.
    S. Sandon, A Morse estimate for translated points of contactomorphisms of spheres and projective spaces. Geom. Dedicata 2012 (2012), 1–16.Google Scholar
  12. San12b.
    S. Sandon, On iterated translated points for contactomorphisms of \({\mathbb{R}^{2n+1}}\) and \({\mathbb{R}^{2n} \times S^1}\). Internat. J. Math. 23 (2012), 1250042, 14pp.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Mathematisches InstitutWWU MünsterGermany
  2. 2.Departement MathematikETH ZürichSwitzerland

Personalised recommendations