Skip to main content
Log in

Abstract

The method of using Finite Time Liapunov Exponents (FTLE) to extract Lagrangian Coherent Structures (LCS) in aperiodic flows, as originally developed by Haller, is applied to geophysical flows. In this approach, the LCS are identified as surfaces of greatest separation that parse the flow into regions with different dynamical behavior. In this way, the LCS reveal the underlying skeleton of turbulence. The time-dependence of the LCS provides insight into the mechanisms by which fluid is transported from one region to another. Of especial interest in this study is the utility with which the FTLE-LCS method can be used to reveal homoclinic and horseshoe dynamics in aperiodic flows.

The FTLE-LCS method is applied to turbulent flow in hurricanes and reveals LCS that delineate sharp boundaries to a storm. Moreover, intersections of the LCS define lobes that mediate transport into and out of a storm through the action of homoclinic lobe dynamics. Using the FTLE-LCS method, the same homoclinic structures are seen to be a dominant transport mechanism in the Global Ocean, and provide insights into the role of mesoscale eddies in enhancing lateral mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aurell E., Boffetta G., Crisanti A., Paladin G., Vulpiani A.: Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys. A 30, 1–26 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beigie D., Leonard A., Wiggins S.: Chaotic transport in the homoclinic and heteroclinic tangle regions of quasiperiodically forced two-dimensional dynamical systems. Nonlinearity 4, 775–819 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. F. O. Bryan, Introduction: Ocean modeling—eddy or not. In: Ocean Modeling in an Eddying Regime, M. Hecht and H. Hasumi (eds.), American Geophysical Union, 2008, 1–3.

  4. Campbell D.K., Rosenau P., Zaslavsky G.M.: Introduction: The Fermi–Pasta–Ulam problem—The first fifty years. Chaos 15, 015101 (2005)

    Article  Google Scholar 

  5. Chelton D.B., Schlax M.G., Samelson R.M., de Szoeke R.A.: Global observations of large oceanic eddies. Geophys. Res. Lett. 34, L15606 (2007)

    Article  Google Scholar 

  6. Chen S.S., Zhao W., Donelan M.A., Price J.F., Walsh E.J.: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc 88, 311–317 (2007)

    Article  Google Scholar 

  7. d’Ovidio F., Fernández V., Hernández-Garca E., López C.: Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 31, L17203 (2004)

    Article  Google Scholar 

  8. Dellnitz M., Junge O., Koon W.S., Lekien F., Lo M.W., Marsden J.E., Padberg K., Preis R., Ross S., Thiere B.: Transport in dynamical astronomy and multibody problems. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15, 699–727 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Drvillon M.: The GODAE/Mercator-Ocean global ocean forecasting system: Results, applications and prospects. J. Operational Oceanogr. 1, 51–57 (2008)

    Google Scholar 

  10. Emanuel K.: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res. 106, 14771–14781 (2001)

    Article  Google Scholar 

  11. Emanuel K.: Environmental factors affecting tropical cyclone power dissipation. J. Climate 20, 5497–5509 (2007)

    Article  Google Scholar 

  12. B. Fox-Kemper and D. Menemenlis, Can large eddy simluation techniques improve mesoscale rich ocean models? In: Ocean Modeling in an Eddying Regime, M. Hecht and H. Hasumi (eds.), American Geophysical Union, 2008, 319–337.

  13. Franco E., Pekarek D., Peng J., Dabiri J.: Geometry of unsteady fluid transport during fluid-structure interactions. J. Fluid Mech. 589, 125–145 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Froyland G., Padberg K., England M.H., Treguier A.M.: Detection of coherent oceanic structures via transfer operators. Phys. Rev. Lett. 98, 224503 (2007)

    Article  Google Scholar 

  15. Froyland G., Padberg K.: Almost invariant sets and invariant manifold—connecting probabilistic and geometric descriptions of coherent structures in flows. Phys. D 238, 1507–1523 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gawlik E., Marsden J., Du Toit P., Campagnola S.: Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celestial Mech. Dynam. Astronom. 103, 227–249 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gent P.R., Mcwilliams J.C.: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990)

    Article  Google Scholar 

  18. Haller G., Yuan G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147, 352–370 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Haller G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys. D 149, 248–277 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Haller G.: Lagrangian coherent structures from approximate velocity data. Phys. Fluids 14, 1851–1861 (2002)

    Article  MathSciNet  Google Scholar 

  21. Hecht M.W., Holm D.D., Petersen M.R., Wingate B.A.: The LANS-α and Leray turbulence parameterizations in primitive equation ocean modeling. J. Phys. A 41, 344009 (2008)

    Article  MathSciNet  Google Scholar 

  22. Hecht M.W., Holm D.D., Petersen M.R., Wingate B.A.: Implementation of the LANS-α turbulence model in a primitive equation ocean model. J. Comput. Phys. 227, 5691–5716 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Houze J., Robert A., Chen S.S., Smull B.F., Lee W., Bell M.M.: Hurricane intensity and eyewall replacement. Science 315, 1235–1239 (2007)

    Article  Google Scholar 

  24. Ide K., Small D., Wiggins S.: Distinguished hyperbolic trajectories in time-dependent fluid flows: Analytical and computational approach for velocity fields defined as data sets. Nonlinear Process. Geophys. 9, 237–263 (2002)

    Article  Google Scholar 

  25. O. Junge, J. E. Marsden, and I. Mezic, Uncertainty in the dynamics of conservative maps. In: Proceedings of the 43rd IEEE Connference on Decision and Control, 2004, 2225–2230.

  26. B. Kuo, et al., Hurricane Isabel Data Produced by the Weather Research and Forecast (WRF) Model, Courtesy of NCAR, and the U.S. National Science Foundation.

  27. F. Lekien, Time-dependent dynamical systems and geophysical flows. PhD thesis, California Institute of Technology, 2003.

  28. Lekien F., Coulliette C., Mariano A.J., Ryan E.H., Shay L.K., Haller G., Marsden J.: Pollution release tied to invariant manifolds: A case study for the coast of Florida. Phys. D 210, 1–20 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lekien F., Shadden S.C., Marsden J.E.: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys. 48, 065404 (2007)

    Article  MathSciNet  Google Scholar 

  30. Li Z., Chao Y., McWilliams J.C., Ide K.: A three-dimensional variational data assimilation scheme for the Regional Ocean Modeling System: Implementation and basic experiments. J. Geophys. Res. 113, C05002 (2008)

    Article  Google Scholar 

  31. Lipinski D., Mohseni K.: A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. Chaos 20, 017504 (2010)

    Article  Google Scholar 

  32. Lorenz E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  33. MacKay R.S., Meiss J.D., Percival I.C.: Transport in Hamiltonian systems. Phys. D 13, 55–81 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mathur M., Haller G., Peacock T., Ruppert-Felsot J.E., Swinney H.L.: Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett. 98, 144502 (2007)

    Article  Google Scholar 

  35. P. Odier, Characterization of turbulent mixing in an Oceanic Overflow Facility. Abstract submitted to DFD07 Meeting of the American Physical Society, 2007.

  36. Peacock T., Dabiri J.: Introduction to Focus Issue: Lagrangian coherent structures. Chaos 20, 017501 (2010)

    Article  Google Scholar 

  37. Peng J., Dabiri J.O.: Transport of inertial particles by Lagrangian coherent structures: Application to predator-prey interaction in jellyfish feeding. J. Fluid Mech. 623, 75–84 (2009)

    Article  MATH  Google Scholar 

  38. H. Poincaré, New Methods of Celestial Mechanics. Springer, 1899.

  39. Rom-Kedar V., Leonard A., Wiggins S.: An analytical study of transport, mixing and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347–394 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rom-Kedar V., Wiggins S.: Transport in two-dimensional maps: Concepts, examples, and a comparison of the theory of Rom-Kedar and Wiggins with the Markov model of MacKay, Meiss, Ott, and Percival. Phys. D 51, 248–266 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sadlo F., Peikert R.: Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Vis. Comput. Graph. 13, 1456–1463 (2007)

    Article  Google Scholar 

  42. Sapsis T., Haller G.: Inertial particle dynamics in a hurricane. J. Atmosph. Sci. 66, 2481–2492 (2009)

    Article  Google Scholar 

  43. Schiermeier Q.: Oceanography: Churn, churn, churn. Nature 447, 522–524 (2007)

    Article  Google Scholar 

  44. Shadden S.C., Lekien F., Marsden J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D 212, 271–304 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Shadden S.C., Katija K., Rosenfeld M., Marsden J.E., Dabiri J.O.: Transport and stirring induced by vortex formation. J. Fluid Mech. 593, 315–331 (2007)

    Article  MATH  Google Scholar 

  46. Shadden S., Taylor C.: Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36, 1152–1162 (2008)

    Article  Google Scholar 

  47. Smale S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  Google Scholar 

  48. Smale S.: Finding a horseshoe on the beaches of Rio. Math. Intelligencer 20, 39–44 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2007.

  50. Sundermeyer M.A., Terray E.A., Ledwell J.R., Cunningham A.G., LaRocque P.E., Banic J., Lillycrop W.J.: Threedimensional mapping of fluorescent dye using a scanning, depth-resolving airborne lidar. J. Atmos. Oceanic Technol. 24, 1050–1065 (2007)

    Article  Google Scholar 

  51. Tallapragada P., Ross S.D.: Particle segregation by Stokes number for small neutrally buoyant spheres in a fluid. Phys. Rev. E 78, 036308 (2008)

    Article  Google Scholar 

  52. Tanaka M., Ross S.: Separatrices and basins of stability from time series data: An application to biodynamics. Nonlinear Dynam. 58, 1–21 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  53. Vellinga M., Wood R.A.: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change 54, 251–267 (2002)

    Article  Google Scholar 

  54. Weinkauf T., Sahner J., Sahner J., Theisel H., Theisel H., Hege H.C.: Cores of swirling particle motion in unsteady flows. IEEE Trans. Vis. Comput. Graph. 13, 1759–1766 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. du Toit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

du Toit, P.C., Marsden, J.E. Horseshoes in hurricanes. J. Fixed Point Theory Appl. 7, 351–384 (2010). https://doi.org/10.1007/s11784-010-0028-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-010-0028-6

Mathematics Subject Classification (2010)

Keywords

Navigation