Journal of Fixed Point Theory and Applications

, Volume 7, Issue 2, pp 291–312 | Cite as

Dynamics of periodically kicked oscillators



We review some recent results surrounding a general mechanism for producing chaotic behavior in periodically kicked oscillators. The key geometric ideas are illustrated via a simple linear shear model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benedicks M., Carleson L.: The dynamics of the Hénon map. Ann. of Math. (2) 133, 73–169 (1991)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Benedicks M., Young L.-S.: Sinai-Bowen-Ruelle measures for certain Henon maps. Invent. Math. 112, 541–576 (1993)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics 470, Springer-Verlag, New York, 1975.Google Scholar
  4. 4.
    Bowen R., Ruelle D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cartwright M.L., Littlewood J.E.: On nonlinear differential equations of the second order. J. London Math. Soc. 20, 180–189 (1945)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    FitzHugh R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  7. 7.
    J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences 42, Springer-Verlag, New York, 1983.Google Scholar
  8. 8.
    Guckenheimer J., Wechselberger M., Young L.-S.: Chaotic attractors of relaxation oscillators. Nonlinearity 19, 701–720 (2006)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Haiduc R.: Horseshoes in the forced van der Pol system. Nonlinearity 22, 213–237 (2009)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds. Lecture Notes in Mathematics 583, Springer-Verlag, New York, 1977.Google Scholar
  11. 11.
    Ledrappier F., Young L.-S.: The metric entropy of diffeomorphisms. Ann. of Math. (2) 122, 509–574 (1985)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Levi M.: Qualitative analysis of the periodically forced relaxation oscillations. Mem. Amer. Math. Soc. 32, 1–147 (1981)Google Scholar
  13. 13.
    Levinson N.: A second order differential equation with singular solutions. Ann. of Math. (2) 50, 127–153 (1949)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Lin K.K., Young L.-S.: Shear-induced chaos. Nonlinearity 21, 899–922 (2008)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    K. Lu, Q. Wang and L.-S. Young, Strange attractors for periodically forced parabolic equations. Preprint.Google Scholar
  16. 16.
    Misiurewciz M.: Absolutely continuous measures for certain maps of an interval. Publ. Math. Inst. Hautes Études Sci. 53, 17–51 (1981)CrossRefGoogle Scholar
  17. 17.
    S. Newhouse, Lectures on dynamical systems. In: Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math. 8, Birkhäuser Boston, Mass., 1980, 1–114.Google Scholar
  18. 18.
    Oseledec V.I.: A multiplicative ergodic theorem: Liapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)MathSciNetGoogle Scholar
  19. 19.
    Ott W., Stenlund M.: From limit cycles to strange attractors. Comm. Math. Phys. 296, 215–249 (2010)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pesin Ya. B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32, 55–114 (1977)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Pugh C., Shub M.: Ergodic attractors. Trans. Amer. Math. Soc. 312, 1–54 (1989)MATHMathSciNetGoogle Scholar
  22. 22.
    Ruelle D.: A measure associated with Axiom-A attractors. Amer. J. Math. 98, 619–654 (1976)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ruelle D.: Ergodic theory of differentiable dynamical systems. Publ. Math. Inst. Hautes Études Sci. 50, 27–58 (1979)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sinai Ya. G.: Gibbs measure in ergodic theory. Russian Math. Surveys 27, 21–69 (1972)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Smale S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)CrossRefMathSciNetGoogle Scholar
  26. 26.
    van der Pol B., van der Mark J.: Frequency demultiplication. Nature 120, 363–364 (1927)CrossRefGoogle Scholar
  27. 27.
    Q. Wang and W. Ott, Dissipative homoclinic loops and rank one chaos. Preprint.Google Scholar
  28. 28.
    Wang Q., Young L.-S.: Strange attractors with one direction of instability. Comm. Math. Phys. 218, 1–97 (2001)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Wang Q., Young L.-S.: From invariant curves to strange attractors. Comm. Math. Phys. 225, 275–304 (2002)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Wang Q., Young L.-S.: Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Comm. Math. Phys. 240, 509–529 (2003)MATHMathSciNetGoogle Scholar
  31. 31.
    Wang Q., Young L.-S.: Toward a theory of rank one attractors. Ann. of Math. (2) 167, 349–480 (2008)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Q. Wang and L.-S. Young, Dynamical profile of a class of rank one attractors Preprint.Google Scholar
  33. 33.
    Winfree A.: The Geometry of Biological Time. 2nd ed., Springer-Verlag, New York (2000)Google Scholar
  34. 34.
    Young L.-S.: What are SRB measures, and which dynamical systems have them?. J. Statist. Phys. 108, 733–754 (2002)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Zaslavsky G.: The simplest case of a strange attractor. Phys. Lett. A 69, 145–147 (1978)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of Mathematics and Program in Applied MathematicsUniversity of ArizonaTucsonUSA
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations