Journal of Fixed Point Theory and Applications

, Volume 4, Issue 2, pp 177–182

Equilibria for set-valued maps on nonsmooth domains



A set-valued map defined on a compact lipschitzian retract of a normed space with nontrivial Euler characteristic and satisfying (i) a strong graph approximation property and (ii) a tangency condition expressed in terms of Clarke’s tangent cone, admits an equilibrium. This result extends in a simple way known solvability theorems to a large class of nonconvex set-valued maps defined on nonsmooth domains.


Equilibria strongly approachable set-valued maps nonsmooth domains approximative absolute neighborhood retracts lipschitzian retracts Clarke’s tangent cone Euler characteristic trivial shape 

Mathematics Subject Classification (2000).

Primary 05C38, 15A15 Secondary 05A15, 15A18 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhaeuser 2008

Authors and Affiliations

  1. 1.Department of MathematicsBrock UniversitySaint CatharinesCanada

Personalised recommendations