Advertisement

Pollution and biodegradation of hexabromocyclododecanes: A review

  • Ling Huang
  • Syed Bilal Shah
  • Haiyang Hu
  • Ping Xu
  • Hongzhi TangEmail author
Review Article

Abstract

Hexabromocyclododecanes (HBCDs) are the most common brominated flame-retardants after polybrominated diphenyl ethers. HBCDs can induce cancer by causing inappropriate antidiuretic hormone syndrome. Environmental contamination with HBCDs has been detected globally, with concentrations ranging from ng to μg. Methods to degrade HBCDs include physicochemical methods, bioremediation, and phytoremediation. The photodegradation of HBCDs using simulated sunlight or ultraviolet lamps, or chemical catalysts are inefficient and expensive, as is physicochemical degradation. Consequently, bioremediation is considered as the most cost-effective and clean approach. To date, five bacterial strains capable of degrading HBCDs have been isolated and identified: Pseudomonas sp. HB01, Bacillus sp. HBCD-sjtu, Achromobacter sp. HBCD-1, Achromobacter sp. HBCD-2, and Pseudomonas aeruginosa HS9. The molecular mechanisms of biodegradation of HBCDs are discussed in this review. New microbial resources should be explored to increase the resource library in order to identify more HBCD-degrading microbes and functional genes. Synthetic biology methods may be exploited to accelerate the biodegradation capability of existing bacteria, including modification of the degrading strains or functional enzymes, and artificial construction of the degradation microflora. The most potentially useful method is combining microdegradation with physicochemical methods and phytoremediation. For example, exogenous microorganisms might be used to stimulate the adsorption capability of plants for HBCDs, or to utilize an interaction between exogenous microorganisms and rhizosphere microorganisms to form a new rhizosphere microbial community to enhance the biodegradation and absorption of HBCDs.

Keywords

Hexabromocyclododecane Biodegradation Bioremediation Phytoremediation Bacterium 

Notes

Acknowledgements

This study was supported by the National Key Research and Development Project (No. SQ2018YFA090024); “Shuguang Program” (No. 17SG09) supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission; National Natural Science Foundation of China (Grant No. 31770114); National Natural Science Fund for Excellent Young Scholars (No. 31422004); and Science and Technology Commission of Shanghai Municipality (No. 17JC1403300).

References

  1. Abdallah M A, Harrad S (2011). Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: Relationship to external exposure. Environment International, 37(2): 443–148CrossRefGoogle Scholar
  2. Arita S, Yamaguchi K, Motokucho S, Nakatani H (2017). Selective decomposition of hexabromocyclododecane in polystyrene with a photo and thermal hybrid treatment system. Polymer Degradation & Stability, 143: 130–135CrossRefGoogle Scholar
  3. Batty L C, Anslow M (2008). Effect of a polycyclic aromatic hydrocarbon on the phytoremediation of zinc by two plant species (Brassica juncea and Festuca arundinacea). International Journal of Phytoremediation, 10(3): 236–249CrossRefGoogle Scholar
  4. Brett H R, Marc L, Daniel P, Robert R B, John H K, Paul E H (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 203(1): 47–56CrossRefGoogle Scholar
  5. Brooks R R (1977). Copper and cobalt uptake by Haumaniastrum species. Plant and Soil, 48(2): 541–544CrossRefGoogle Scholar
  6. Carignan C C, Abdallah M A, Wu N, Heiger-Bernays W, McClean M D, Harrad S, Webster T F (2012). Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from Boston mothers. Environmental Science & Technology, 46(21): 12146–12153CrossRefGoogle Scholar
  7. Chen J, Wang C, Pan Y, Farzana S S, Tam N F (2018). Biochar accelerates microbial reductive debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments. Journal of Hazardous Materials, 341: 177–186CrossRefGoogle Scholar
  8. Chi X, Zhang Y, Wang D, Wang F, Liang W (2018). The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45. Frontiers of Environmental Science & Engineering, 12(1): 11CrossRefGoogle Scholar
  9. Davis J W, Gonsior S, Marty G, Ariano J (2005). The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments. Water Research, 39(6): 1075–1084CrossRefGoogle Scholar
  10. Davis J W, Gonsior S J, Markham D A, Friederich U, Hunziker R W, Ariano J M (2006). Biodegradation and product identification of [14C]hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment. Environmental Science & Technology, 40(17): 5395–5401CrossRefGoogle Scholar
  11. Drage D, Mueller J F, Birch G, Eaglesham G, Hearn L K, Harrad S (2015). Historical trends of PBDEs and HBCDs in sediment cores from Sydney estuary, Australia. Science of the Total Environment, 512–513: 177–184CrossRefGoogle Scholar
  12. Ema M, Fujii S, Hirata-Koizumi M, Matsumoto M (2008). Two-generation reproductive toxicity study of the flame retardant hexabromocyclododecane in rats. Reproductive Toxicology (Elmsford, N.Y.), 25(3): 335–351CrossRefGoogle Scholar
  13. Fennell D E, Nijenhuis I, Wilson S F, Zinder S H, Häggblom M M (2004). Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology, 38(7): 2075–2081CrossRefGoogle Scholar
  14. Fery Y, Buschauer I, Salzig C, Lang P, Schrenk D (2009). Technical pentabromodiphenyl ether and hexabromocyclododecane as activators of thepregnane-X-receptor(PXR). Toxicology, 264(1–2): 45–51CrossRefGoogle Scholar
  15. Fonseca V M, Jr V J F, Araujo A S, Carvalho L H, Souza A G (2005). Effect of halogenated flame-retardant additives in the pyrolysis and thermal degradation of polyester/sisal composites. Journal of Thermal Analysis and Calorimetry, 79(2): 429–433CrossRefGoogle Scholar
  16. Garg N, Bala K, Lal R (2012). Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 62(3): 618–623CrossRefGoogle Scholar
  17. Glick B R (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5): 383–393CrossRefGoogle Scholar
  18. Ha NTH, Sakakibara, M, Sano S (2010). Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte eleocharis acicularis. Clean- Soil Air Water, 37(9): 720–725CrossRefGoogle Scholar
  19. He J, Ritalahti K M, Yang K L, Koenigsberg S S, Löffler F E (2003). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424(6944): 62–65CrossRefGoogle Scholar
  20. Heeb N V, Wyss S A, Geueke B, Fleischmann T, Kohler H E, Lienemann P (2014). LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs. Chemosphere, 107: 194–202CrossRefGoogle Scholar
  21. Ho K F, Ho S S H, Lee S C, Cheng J, Watson J, Louie P K K, Tian L (2009). Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmospheric Environment, 43(40): 6343–6351CrossRefGoogle Scholar
  22. Huang L, Wang W, Shah S B, Hu H, Xu P, Tang H (2019). The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation. Journal of Hazardous Materials, 380: 120833CrossRefGoogle Scholar
  23. Kim G B, Stapleton H M (2010). PBDEs, methoxylated PBDEs and HBCDs in Japanese common squid (Todarodes pacificus) from Korean offshore waters. Marine Pollution Bulletin, 60(6): 935–940 PMID:20394952CrossRefGoogle Scholar
  24. Košnâř Z, Částková T, Wiesnerová L, Praus L, Jablonský I, Koudela M, Tlustoš P (2019). Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relationto the extracellular enzyme activities. Journal of Environmental Sciences-China, 76(2): 249–258CrossRefGoogle Scholar
  25. Lee L K, Ding C, Yang K L, He J (2011). Complete debromination of tetra- and penta-brominated diphenyl ethers by a coculture consisting of dehalococcoides and desulfovibrio species. Environmental Science & Technology, 45(19): 8475–8482CrossRefGoogle Scholar
  26. Li L, Weber R, Liu J, Hu J (2016). Long-term emissions of hexabromocyclododecane as a chemical of concern in products in China. Environment International, 91: 291–300CrossRefGoogle Scholar
  27. Li Y, Wang L, Zhu X, Gao Y, Chen J (2017). Determination of hexabromocyclododecanes in ambient air by high performance liquid chromatography- electrospray ionization-mass spectrometry. Se Pu, 35(10): 1080–1085 (in Chinese)Google Scholar
  28. Liu Q, Li M, Liu R, Zhang Q, Wu D, Zhu D N, Shen X H, Feng C P, Zhang F W, Liu X (2019). Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities. Frontiers of Environmental Science & Engineering, 13(2): 28CrossRefGoogle Scholar
  29. Liu Q, Li M, Liu X, Zhang Q, Liu R, Wang Z, Shi X, Quan J, Shen X, Zhang F (2018). Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism. Frontiers of Environmental Science & Engineering, 12(6): 6CrossRefGoogle Scholar
  30. Liu W W, Yin R, Lin X G, Zhang J, Chen X M, Li X Z, Yang T (2010). Interaction of biosurfactant-microorganism to enhance phytoremediation of aged polycyclic aromatic hydrocarbons (PAHS) contaminated soils with alfalfa (Medicago sativa L.). Environmental Science, 31(4): 1079–1084 (in Chinese)Google Scholar
  31. Lu J F, He M J, Yang Z H, Wei S Q (2018). Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure. Environmental Pollution, 242(A): 219–228CrossRefGoogle Scholar
  32. Luijten M L G C, de Weert J, Smidt H, Boschker H T S, de Vos W M, Schraa G, Stams A J M (2003). Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. International Journal of Systematic and Evolutionary Microbiology, 53(3): 787–793CrossRefGoogle Scholar
  33. Maymó-Gatell X, Chien Y, Gossett J M, Zinder S H (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276(5318): 1568–1571CrossRefGoogle Scholar
  34. Minh N H, Isobe T, Ueno D, Matsumoto K, Mine M, Kajiwara N, Takahashi S, Tanabe S (2007). Spatial distribution and vertical profile of polybrominated diphenyl ethers and hexabromocyclododecanes in sediment core from Tokyo Bay, Japan. Environmental Pollution, 148(2): 409–417CrossRefGoogle Scholar
  35. Munschy C, Marchand P, Venisseau A, Veyrand B, Zendong Z (2013). Levels and trends of the emerging contaminants HBCDs (hexabromocyclododecanes) and PFCs (perfluorinated compounds) in marine shellfish along French coasts. Chemosphere, 91(2): 233–240CrossRefGoogle Scholar
  36. Muthu I G S, Nirkayani B, Kavithakani A, Padmanaban V C (2019). Statistical modeling of radiolytic (60Coγ) degradation of ofloxacin, antibiotic: Synergetic effect, kinetic studies & assessment of its degraded metabolites. Frontiers of Environmental Science & Engineering, 13(3): 42CrossRefGoogle Scholar
  37. Ni H G, Zeng H (2013). HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Science of the Total Environment, 458–460: 15–19CrossRefGoogle Scholar
  38. Palace V P, Pleskach K, Halldorson T, Danell R, Wautier K, Evans B, Alaee M, Marvin C, Tomy G T (2008). Biotransformation enzymes and thyroid axis disruption in juvenile rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane diastereoisomers. Environmental Science & Technology, 42(6): 1967–1972CrossRefGoogle Scholar
  39. Peng X, Huang X, Jing F, Zhang Z, Wei D, Jia X (2015). Study of novel pure culture HBCD-1, effectively degrading Hexabromocyclododecane, isolated from an anaerobic reactor. Bioresource Technology, 185: 218–224CrossRefGoogle Scholar
  40. Peng X, Wei D, Huang Q, Jia X (2018). Debromination of hexabromocyclododecane by anaerobic consortium and characterization of functional bacteria. Frontiers in Microbiology, 9: 1515CrossRefGoogle Scholar
  41. POPRC (2011). Report of the persisitent organic pollutants review committee on the work of its seventh meeting: Risk management evaluation on hexabromocyclododecane. Geneva: POPRCGoogle Scholar
  42. Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Diekert G (1995). Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 163(1): 4856CrossRefGoogle Scholar
  43. Shah S B, Ali F, Huang L, Wang W, Xu P, Tang H (2018). Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium. 3Biotech, 8(7): 291Google Scholar
  44. Shah S B, Hu H Y, Wang W W, Liu Y F, Ali F, Xu P, Tang H Z (2019a). Evaluation of plant growth promoting (PGP) activity of strain HBCD-sjtu. Journal of Biological Regulators and Homeostatic Agents, 33: 129–134Google Scholar
  45. Shah S B, Kaushik A C, Ali F, Huang L, Lu X, Sartaj L, Xu P, Tang H (2019b). Computational and in vitro analysis of an HBCD degrading gene DehHZ1 from strain HBCD-sjtu. Journal of Biological Regulators and Homeostatic Agents, 33(1): 157–162Google Scholar
  46. Stiborova H, Vrkoslavova J, Pulkrabova J, Poustka J, Hajslova J, Demnerova K (2015). Dynamics of brominated flame retardants removal in contaminated wastewater sewage sludge under anaerobic conditions. Science of the Total Environment, 533: 439–445CrossRefGoogle Scholar
  47. Su J, Lu Y, Liu Z, Gao S, Zeng X, Yu Z, Sheng G, Fu J M (2015). Distribution of polybrominated diphenyl ethers and HBCD in sediments of the Hunhe River in Northeast China. Environmental Science and Pollution Research International, 22(21): 16781–16790CrossRefGoogle Scholar
  48. Sun R, Luo X, Zheng X, Cao K, Peng P, Li Q X, Mai B (2018). Hexabromocyclododecanes (HBCDs) in fish: Evidence of recent HBCD input into the coastal environment. Marine Pollution Bulletin, 126: 357–362CrossRefGoogle Scholar
  49. Szabo D T, Diliberto J J, Hakk H, Huwe J K, Birnbaum L S (2011). Toxicokinetics of the flame retardant hexabromocyclododecane alpha: effect of dose, timing, route, repeated exposure, and metabolism. Toxicological Sciences, 121(2): 234–244CrossRefGoogle Scholar
  50. Van der Ven L T, Verhoef A, van de Kuil T, Slob W, Leonards P E, Visser T J, Hamers T, Herlin M, Håkansson H, Olausson H, Piersma A H, Vos J G (2006). A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in Wistar rats. Toxicological Sciences, 94(2): 281–292CrossRefGoogle Scholar
  51. Wu T, Huang H, Zhang S (2016). Accumulation and phytotoxicity of technical hexabromocyclododecane in maize. Journal of Environmental Sciences-China, 42(4): 97–104CrossRefGoogle Scholar
  52. Wu T, Wang S, Huang H, Zhang S (2012). Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize. Journal of Agricultural and Food Chemistry, 60(34): 8528–8534CrossRefGoogle Scholar
  53. Xia J, Wang H, Stanford R L, Pan G, Yu S L (2018). Hydrologic and water quality performance of a laboratory scale bioretention unit. Frontiers of Environmental Science & Engineering, 12(1): 14CrossRefGoogle Scholar
  54. Xian Q, Ramu K, Isobe T, Sudaryanto A, Liu X, Gao Z, Takahashi S, Yu H, Tanabe S (2008). Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China. Chemosphere, 71(2): 268–276CrossRefGoogle Scholar
  55. Yamada T, Takahama Y, Yamada Y (2009). Isolation of Pseudomonas sp. strain HB01 which degrades the persistent brominated flame retardant γ-hexabromocyclododecane. Nippon Nogeikagaku Kaishi, 73(7): 1674–1678Google Scholar
  56. Yi S, Liu J G, Jin J, Zhu J (2016). Assessment of the occupational and environmental risks of hexabromocyclododecane (HBCD) in China. Chemosphere, 150: 431–437CrossRefGoogle Scholar
  57. Zhang H, Kuo Y Y, Gerecke A C, Wang J (2012a). Co-release of hexabromocyclododecane (HBCD) and Nano- and microparticles from thermal cutting of polystyrene foams. Environmental Science & Technology, 46(20): 10990–10996CrossRefGoogle Scholar
  58. Zhang K, Huang J, Wang H, Liu K, Yu G, Deng S, Wang B (2014). Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. Chemosphere, 116: 40–45CrossRefGoogle Scholar
  59. Zhang X, Yang H, Cui Z (2017). Alleviating effect and mechanism of flavonols in Arabidopsis resistance under Pb-HBCD stress. ACS Sustainable Chemistry & Engineering, 5(11): 11034–11041CrossRefGoogle Scholar
  60. Zhang Y, Ruan Y, Sun H, Zhao L, Gan Z (2013). Hexabromocyclododecanes in surface sediments and a sediment core from Rivers and Harbor in the northern Chinese city of Tianjin. Chemosphere, 90(5): 1610–1616CrossRefGoogle Scholar
  61. Zhang Y, Wang H, Yu Z, Geng X, Chen C, Li D, Zhu X, Zhen H, Huang W, Fennell D E, Young L Y, Peng P (2018). Diastereoisomer-specific biotransformation of hexabromocyclododecanes by a mixed culture containing Dehalococcoides mccartyi strain 195. Frontiers in Microbiology, 9: 1713CrossRefGoogle Scholar
  62. Zhang Z, Rengel Z, Chang H, Meney K, Pantelic L, Tomanovc R (2012b). Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma, 175–176: 1–8CrossRefGoogle Scholar
  63. Zheng X, Qiao L, Sun R, Luo X, Zheng J, Xie Q, Sun Y, Mai B (2017). Alteration of diastereoisomeric and enantiomeric profiles of hexabromocyclododecanes (HBCDs) in adult chicken tissues, eggs, and hatchling chickens. Environmental Science & Technology, 51(10): 5492–5499CrossRefGoogle Scholar
  64. Zhou D, Wu Y, Feng X, Chen Y, Wang Z, Tao T, Wei D (2014). Photodegradation of hexabromocyclododecane (HBCD) by Fe(III) complexes/H2O2 under simulated sunlight. Environmental Science and Pollution Research International, 21(9): 6228–6233CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ling Huang
    • 1
  • Syed Bilal Shah
    • 1
  • Haiyang Hu
    • 1
  • Ping Xu
    • 1
  • Hongzhi Tang
    • 1
    Email author
  1. 1.State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations