Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes

  • Jian Wang
  • Qun Wang
  • Xueli Gao
  • Xinxia Tian
  • Yangyang Wei
  • Zhen Cao
  • Chungang Guo
  • Huifeng Zhang
  • Zhun MaEmail author
  • Yushan ZhangEmail author
Research Article


Mesoporous silica nanoparticles (MSN), with higher water permeability than NaA zeolite, were used to fabricate thin-film nanocomposite (TFN) reverse osmosis (RO) membranes. However, only aminoalkyl-modified MSN and low-pressure (less than 2.1 MPa) RO membrane were investigated. In this study, aminophenyl-modified MSN (AMSN) were synthesized and used to fabricate high-pressure (5.52 MPa) RO membranes. With the increasing of AMSN dosage, the crosslinking degree of the aromatic polyamide decreased, while the hydrophilicity of the membranes increased. The membrane morphology was maintained to show a ridge-and-valley structure, with only a slight increase in membrane surface roughness. At the optimum conditions (AMSN dosage of 0.25 g/L), when compared with the pure polyamide RO membrane, the water flux of the TFN RO membrane (55.67 L/m2/h) was increased by about 21.6%, while NaCl rejection (98.97%) was slightly decreased by only 0.29%. However, the water flux of the membranes was much lower than expected. We considered that the enhancement of RO membrane permeability is attributed to the reduction of the effective thickness of the PA layer.


Thin film nanocomposite membrane Reverse osmosis Seawater desalination Aminophenyl-functionalized mesoporous silica nanoparticles 



This work is supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC0403903; 2017YFC0403901 and 2018YFC0408002), and the Special Fund for Basic Scientific Research Business of Central Public Research Institutes (No. K-JBYWF-2017-T12 and K-JBYWF-2018-HZ01), and the Young Taishan Scholars Program of Shandong Province.


  1. Amy G, Ghaffour N, Li Z, Francis L, Linares R V, Missimer T, Lattemann S (2017). Membrane-based seawater desalination: Present and future prospects. Desalination, 401: 16–21CrossRefGoogle Scholar
  2. Baig M I, Ingole P G, Choi W K, Jeon J, Jang B, Moon J H, Lee H K (2017). Synthesis and characterization of thin film nanocomposite membranes incorporated with surface functionalized silicon nanoparticles for improved water vapor permeation performance. Chemical Engineering Journal, 308: 27–39CrossRefGoogle Scholar
  3. Bao M, Zhu G, Wang L, Wang M, Gao C (2013). Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization. Desalination, 309: 261–266CrossRefGoogle Scholar
  4. Chae H, Lee C, Park P, Kim I, Kim J (2017). Synergetic effect of graphene oxide nanosheets embedded in the active and support layers on the performance of thin-film composite membranes. Journal of Membrane Science, 525: 99–106CrossRefGoogle Scholar
  5. Chen H, Sun Z, Shao J (2011). Investigation on FT-IR spectroscopy for eight different sources of SiO2. Bulletin of the Chinese Ceramic Society, 30(04): 934–937Google Scholar
  6. Cohen-Tanugi D, McGovern R K, Dave S H, Lienhard J H, Grossman J C (2014). Quantifying the potential of ultra-permeable membranes for water desalination. Energy & Environmental Science, 7(3): 1134–1141CrossRefGoogle Scholar
  7. Das R, Ali M E, Hamid S B A, Ramakrishna S, Chowdhury Z Z (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336: 97–109CrossRefGoogle Scholar
  8. Farahbakhsh J, Delnavaz M, Vatanpour V (2017). Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties. Desalination, 410: 1–9CrossRefGoogle Scholar
  9. Guo X, Li C, Li C, Wei T, Tong L, Shao H, Zhou Q, Wang L, Liao Y (2019). G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance. Frontiers of Environmental Science & Engineering, 13(6): 81–91CrossRefGoogle Scholar
  10. Han Y, Jiang Y, Gao C (2015). High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 7(15): 8147–8155CrossRefGoogle Scholar
  11. Han Y, Xu Z, Gao C (2013). Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 23(29): 3693–3700CrossRefGoogle Scholar
  12. Huang L, Zhang M, Li C, Shi G (2015). Graphene-Based Membranes for Molecular Separation. The Journal of Physical Chemistry Letters, 6(14): 2806–2815CrossRefGoogle Scholar
  13. Jeong B, Hoek E M V, Yan Y, Subramani A, Huang X, Hurwitz G, Ghosh A K, Jawor A (2007). Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. Journal of Membrane Science, 294(1–2): 1–7CrossRefGoogle Scholar
  14. Kadhom M, Yin J, Deng B (2016). A thin film nanocomposite membrane with MCM-41 silica nanoparticles for brackish water purification. Membranes, 6(4): 50CrossRefGoogle Scholar
  15. Kim E S, Hwang G, Gamal El-Din M G, Liu Y (2012). Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. Journal of Membrane Science, 394–395: 37–48CrossRefGoogle Scholar
  16. Kim H J, Choi K, Baek Y, Kim D G, Shim J, Yoon J, Lee J C (2014). High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Applied Materials & Interfaces, 6(4): 2819–2829CrossRefGoogle Scholar
  17. Kim S G, Hyeon D H, Chun J H, Chun B, Kim S H (2013). Nanocomposite poly (arylene ether sulfone) reverse osmosis membrane containing functional zeolite nanoparticles for seawater desalination. Journal of Membrane Science, 443: 10–18CrossRefGoogle Scholar
  18. Lau W J, Gray S, Matsuura T, Emadzadeh D, Paul Chen J, Ismail A F (2015). A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Research, 80: 306–324CrossRefGoogle Scholar
  19. Lee H S, Im S J, Kim J H, Kim H J, Kim J P, Min B R (2008). Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 219(1–3): 48–56CrossRefGoogle Scholar
  20. Lee J, Jang J H, Chae H R, Lee S H, Lee C H, Park P K, Won Y J, Kim I C (2015). A facile route to enhance the water flux of thin-film composite reverse osmosis membrane: Incorporating thickness-controlled graphene oxide in highly porous support layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(44): 22053–22060Google Scholar
  21. Li L, Liu N, McPherson B, Lee R (2008). Influence of counter ions on the reverse osmosis through MFI zeolite membranes: Implications for produced water desalination. Desalination, 228(1–3): 217–225CrossRefGoogle Scholar
  22. Li Q, Yu H, Wu F, Song J, Pan X, Zhang M (2016). Fabrication of semi-aromatic polyamide/spherical mesoporous silica nanocomposite reverse osmosis membrane with superior permeability. Applied Surface Science, 363: 338–345CrossRefGoogle Scholar
  23. Lind M L, Ghosh A K, Jawor A, Huang X, Hou W, Yang Y, Hoek E M V (2009). Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir, 25(17): 10139–10145CrossRefGoogle Scholar
  24. Lind M L, Suk D E, Nguyen T V, Hoek E (2010). Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environmental Science & Technology, 44(21): 8230–8235CrossRefGoogle Scholar
  25. Liu L, Zhu G, Liu Z, Gao C (2016). Effect of MCM-48 nanoparticles on the performance of thin film nanocomposite membranes for reverse osmosis application. Desalination, 394: 72–82CrossRefGoogle Scholar
  26. Liu Q, Xu G (2016). Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination, 394: 162–175CrossRefGoogle Scholar
  27. Lu S, Wang D, Jiang S P, Xiang Y, Lu J, Zeng J (2010). HPW/MCM-41 phosphotungstic acid/mesoporous silica composites as novel proton-exchange membranes for elevated-temperature fuel cells. Advanced Materials, 22(9): 971–976CrossRefGoogle Scholar
  28. Mahmoud K A, Mansoor B, Mansour A, Khraisheh M (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356: 208–225CrossRefGoogle Scholar
  29. Manawi Y, Kochkodan V, Hussein M A, Khaleel M A, Khraisheh M, Hilal N (2016). Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 391: 69–88CrossRefGoogle Scholar
  30. Niksefat N, Jahanshahi M, Rahimpour A (2014). The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination, 343: 140–146CrossRefGoogle Scholar
  31. Pang R, Zhang K (2018). Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection. Journal of Colloid and Interface Science, 510: 127–132CrossRefGoogle Scholar
  32. Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D (2017a). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530CrossRefGoogle Scholar
  33. Park H M, Jee K Y, Lee Y T (2017b). Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks. Journal of Membrane Science, 541: 510–518CrossRefGoogle Scholar
  34. Park K T, Kim S G, Chun B, Bang J, Kim S H (2010). Sulfonated poly (arylene ether sulfone) thin-film composite reverse osmosis membrane containing SiO2 nano-particles. Desalination and Water Treatment, 15(1–3): 69–75CrossRefGoogle Scholar
  35. Pendergast M M, Hoek E M V (2011). A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6): 1946–1971CrossRefGoogle Scholar
  36. Rajaeian B, Rahimpour A, Tade M O, Liu S (2013). Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination, 313: 176–188CrossRefGoogle Scholar
  37. Tian X, Wang J, Zhang H, Cao Z, Zhao M, Guan Y, Zhang Y (2018). Establishment of transport channels with carriers for water in reverse osmosis membrane by incorporating hydrotalcite into the polyamide layer. RSC Advances, 8(22): 12439–12448CrossRefGoogle Scholar
  38. Vatanpour V, Safarpour M, Khataee A, Zarrabi H, Yekavalangi M E, Kavian M (2017). A thin film nanocomposite reverse osmosis membrane containing amine-functionalized carbon nanotubes. Separation and Purification Technology, 184: 135–143CrossRefGoogle Scholar
  39. Virgili F, Pankratz T (2016). IDA desalination yearbook 2016–2017, Media Analytics Ltd., Oxford.Google Scholar
  40. Wang J, Dlamini D S, Mishra A K, Pendergast M T M, Wong M C Y, Mamba B B, Freger V, Verliefde A R D, Hoek E M V (2014). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537CrossRefGoogle Scholar
  41. Werber J R, Osuji C O, Elimelech M (2016). Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 1(5): 16018CrossRefGoogle Scholar
  42. Wu H, Tang B, Wu P (2013). Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. Journal of Membrane Science, 428: 341–348CrossRefGoogle Scholar
  43. Yang Z, Yin J, Deng B (2016). Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. AIMS Environmental Science, 3(2): 185–198CrossRefGoogle Scholar
  44. Yin J, Kim E, Yang J, Deng B (2012). Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nano-particles (NPs) for water purification. Journal of Membrane Science, 423–424: 238–246CrossRefGoogle Scholar
  45. Yin J, Zhu G, Deng B (2016). Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination, 379: 93–101CrossRefGoogle Scholar
  46. Zargar M, Hartanto Y, Jin B, Dai S (2016). Hollow mesoporous silica nanoparticles: A peculiar structure for thin film nanocomposite membranes. Journal of Membrane Science, 519: 1–10CrossRefGoogle Scholar
  47. Zargar M, Hartanto Y, Jin B, Dai S (2017). Understanding Functionalized Silica Nanoparticles Incorporation in Thin Film Composite Membranes: Interactions and Desalination Performance. Journal of Membrane Science, 521: 53–64CrossRefGoogle Scholar
  48. Zhu B, Hong Z, Milne N, Doherty C M, Zou L, Lin Y S, Hill A J, Gu X, Duke M (2014). Desalination of seawater ion complexes by MFI-type zeolite membranes: Temperature and long term stability. Journal of Membrane Science, 453: 126–135CrossRefGoogle Scholar
  49. Zhu G, Bao M, Liu Z, Gao C (2016). Preparation of spherical mesoporous aminopropyl-functionalized MCM-41 and its application in polyamide thin film nanocomposite reverse osmosis membranes. Desalination and Water Treatment, 57(53): 25411–25420CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jian Wang
    • 1
  • Qun Wang
    • 2
  • Xueli Gao
    • 3
  • Xinxia Tian
    • 1
  • Yangyang Wei
    • 1
  • Zhen Cao
    • 1
  • Chungang Guo
    • 1
  • Huifeng Zhang
    • 1
  • Zhun Ma
    • 2
    Email author
  • Yushan Zhang
    • 1
    Email author
  1. 1.The Institute of Seawater Desalination and Multipurpose UtilizationMinistry of Natural Resources (Tianjin)TianjinChina
  2. 2.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina
  3. 3.Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education)Ocean University of ChinaQingdaoChina

Personalised recommendations