Advertisement

A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds

  • Wenjing LuEmail author
  • Yawar Abbas
  • Muhammad Farooq Mustafa
  • Chao Pan
  • Hongtao Wang
Review Article
  • 6 Downloads

Abstract

Volatile organic compounds (VOCs) released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health. Non-thermal plasma (NTP) technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air stream. Due to its unique characteristics, such as rapid response at room temperature, bulk homogenized volume, high reaction efficiency, dielectric barrier discharge (DBD) plasma technology is considered one of the most promising techniques of NTP. This paper reviews recent progress of DBD plasma technology for abatement of VOCs. The principle of plasma generation in DBD and its configurations (electrode, discharge gap, dielectric barrier material, etc.) are discussed in details. Based on previously published literature, attention has been paid on the effect of DBD configuration on the removal of VOCs. Effect of various process parameters such as initial concentration, gas feeding rate, oxygen content and input power on VOCs removal are also considered. Moreover, the role of catalysis and inhibitors in VOCs removal by DBD system are presented. Finally, a modified configuration of the DBD reactor, i.e. double dielectric barrier discharge (DDBD) for the abatement of VOCs is discussed. It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode. These depositions can interfere with the performance of the reactor.

Keywords

Non-thermal plasma (NTP) Dielectric barrier discharge (DBD) Volatile organic compounds (VOCs) Abatement Input power 

Notes

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFD1100605).

References

  1. Abbas N, Hussain M, Russo N, Saracco G (2011). Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs. Chemical Engineering Journal, 175: 330–340CrossRefGoogle Scholar
  2. Abd Allah Z, Whitehead J C, Martin P (2014). Remediation of dichloromethane (CH2Cl2) using non-thermal, atmospheric pressure plasma generated in a packed-bed reactor. Environmental Science & Technology, 48(1): 558–565CrossRefGoogle Scholar
  3. Abdelaziz A A, Ishijima T, Seto T (2018). Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition. Physics of Plasmas, 25(4): 043512 (1–9)CrossRefGoogle Scholar
  4. Abdullah A Z, Bakar M Z A, Bhatia S (2006). Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst. Journal of Hazardous Materials, 129(1–3): 39–49CrossRefGoogle Scholar
  5. Abedi K, Ghorbani-Shahna F, Jaleh B, Bahrami A, Yarahmadi R (2014). Enhanced performance of non-thermal plasma coupled with TiO2/ GAC for decomposition of chlorinated organic compounds: influence of a hydrogen-rich substance. Journal of Environmental Health Science & Engineering, 12(1): 119CrossRefGoogle Scholar
  6. Abedi K, Ghorbani-Shahna F, Jaleh B, Bahrami A, Yarahmadi R, Haddadi R, Gandomi M (2015). Decomposition of chlorinated volatile organic compounds (CVOCs) using NTP coupled with TiO2/ GAC, ZnO/GAC, and TiO2–ZnO/GAC in a plasma-assisted catalysis system. Journal of Electrostatics, 73: 80–88CrossRefGoogle Scholar
  7. Abou Saoud W, Assadi A A, Guiza M, Bouzaza A, Aboussaoud W, Soutrel I, Ouederni A, Wolbert D, Rtimi S (2018). Abatement of ammonia and butyraldehyde under non-thermal plasma and photocatalysis: Oxidation processes for the removal of mixture pollutants at pilot scale. Chemical Engineering Journal, 344: 165–172CrossRefGoogle Scholar
  8. Aggelopoulos C A, Tataraki D, Rassias G (2018). Degradation of atrazine in soil by dielectric barrier discharge plasma–Potential singlet oxygen mediation. Chemical Engineering Journal, 347: 682–694CrossRefGoogle Scholar
  9. Aranzabal A, Romero-Sáez M, Elizundia U, González-Velasco J R, Gonzlez-Marcos J A (2012). Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. Journal of Catalysis, 296: 165–174CrossRefGoogle Scholar
  10. Ashford B, Tu X (2017). Non-thermal plasma technology for the conversion of CO2. Current Opinion in Green and Sustainable Chemistry, 3: 45–49CrossRefGoogle Scholar
  11. Bahri M, Haghighat F, Rohani S, Kazemian H (2016). Impact of design parameters on the performance of non-thermal plasma air purification system. Chemical Engineering Journal, 302: 204–212CrossRefGoogle Scholar
  12. Bahri M, Haghighat F, Rohani S, Kazemian H (2017). Metal organic frameworks for gas-phase VOCs removal in a NTP-catalytic reactor. Chemical Engineering Journal, 320: 308–318CrossRefGoogle Scholar
  13. Barbusinski K, Kalemba K, Kasperczyk D, Urbaniec K, Kozik V (2017). Biological methods for odor treatment–A review. Journal of Cleaner Production, 152: 223–241CrossRefGoogle Scholar
  14. Bo Z, Hao H, Yang S, Zhu J, Yan J, Cen K (2018). Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasmacatalysis for toluene decomposition. Applied Surface Science, 436: 570–578CrossRefGoogle Scholar
  15. Boycheva S, Zgureva D, Václavíková M, Kalvachev Y, Lazarova H, Popova M (2018). Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation. Journal of Hazardous Materials, 361: 374–382CrossRefGoogle Scholar
  16. Brandenburg R (2017). Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science & Technology, 26(5): 1–29CrossRefGoogle Scholar
  17. Byeon J H, Park J H, Jo Y S, Yoon K Y, Hwang J (2010). Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor. Journal of Hazardous Materials, 175(1–3): 417–422CrossRefGoogle Scholar
  18. Carabineiro S A C, Chen X, Martynyuk O, Bogdanchikova N, Avalos-Borja M, Pestryakov A, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L (2015). Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 244: 103–114CrossRefGoogle Scholar
  19. Chang C L, Lin T S (2005). Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 25(3): 227–243CrossRefGoogle Scholar
  20. Chang T, Shen Z, Huang Y, Lu J, Ren D, Sun J, Cao J, Liu H (2018). Post-plasma-catalytic removal of toluene using MnO2–Co3O4 catalysts and their synergistic mechanism. Chemical Engineering Journal, 348: 15–25CrossRefGoogle Scholar
  21. Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, Sreethawong T (2007). A combined multistage corona discharge and catalytic system for gaseous benzene removal. Journal of Molecular Catalysis A Chemical, 263(1–2): 128–136CrossRefGoogle Scholar
  22. Chen H L, Lee H M, Chen S H, Chang M B, Yu S J, Li S N (2009a). Removal of volatile organic compounds by single-stage and twostage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 43(7): 2216–2227CrossRefGoogle Scholar
  23. Chen J, Su Q, Pan H, Wei J, Zhang X, Shi Y (2009b). Influence of balance gas mixture on decomposition of dimethyl sulfide in a wirecylinder pulse corona reactor. Chemosphere, 75(2): 261–265CrossRefGoogle Scholar
  24. Chen J, Xie Z, Tang J, Zhou J, Lu X, Zhao H (2016). Oxidation of toluene by dielectric barrier discharge with photo-catalytic electrode. Chemical Engineering Journal, 284: 166–173CrossRefGoogle Scholar
  25. Chiper A S, Blin-Simiand N, Heninger M, Mestdagh H, Boissel P, Jorand F, Lemaire J, Leprovost J, Pasquiers S, Popa G, Christian P (2009). Detailed characterization of 2-heptanone conversion by dielectric barrier discharge in N2 and N2/O2 mixtures. The Journal of Physical Chemistry A, 114(1): 397–407CrossRefGoogle Scholar
  26. Choi S, Lee M S, Park D W (2014). Photocatalytic performance of TiO2/ V2O5 nanocomposite powder prepared by DC arc plasma. Current Applied Physics, 14(3): 433–438CrossRefGoogle Scholar
  27. Crowley B (2015). On the electrical conductivity of plasmas and metals. arXiv preprint arXiv:1508.06101. Available online at https://arxiv. org/ftp/arxiv/papers/1508/1508.06101.pdf (accessed January 10, 2019)Google Scholar
  28. Dai Q, Wang X, Lu G (2008). Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B: Environmental, 81(3–4): 192–202CrossRefGoogle Scholar
  29. Delagrange S, Pinard L, Tatibouët J M (2006). Combination of a nonthermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Applied Catalysis B: Environmental, 68(3–4): 92–98CrossRefGoogle Scholar
  30. Dinh M N, Giraudon J M, Vandenbroucke A, Morent R, De Geyter N, Lamonier J F (2016). Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. Journal of Hazardous Materials, 314: 88–94CrossRefGoogle Scholar
  31. Dobslaw D, Ortlinghaus O, Dobslaw C (2018). A combined process of non-thermal plasma and a low-cost mineral adsorber for VOC removal and odor abatement in emissions of organic waste treatment plants. Journal of Environmental Chemical Engineering, 6(2): 2281–2289CrossRefGoogle Scholar
  32. Dors M, Tomasz Izdebski, Mateusz Tanski, Mizeraczyk J (2014). The influence of hydrogen sulphide and configuration of a DBD reactor powered with nanosecond high voltage pulses on hydrogen production from biogas. European Chemical Bulletin, 3(8): 798–804Google Scholar
  33. Dou B, Liu D, Zhang Q, Zhao R, Hao Q, Bin F, Cao J (2017). Enhanced removal of toluene by dielectric barrier discharge coupling with Cu-Ce-Zr supported ZSM-5/TiO2/Al2O3. Catalysis Communications, 92: 15–18CrossRefGoogle Scholar
  34. Fan X, Zhu T, Sun Y, Yan X (2011). The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. Journal of Hazardous Materials, 196: 380–385CrossRefGoogle Scholar
  35. Fan X, Zhu T L, Wang M Y, Li X M (2009). Removal of lowconcentration BTX in air using a combined plasma catalysis system. Chemosphere, 75(10): 1301–1306CrossRefGoogle Scholar
  36. Feng X, Liu H, He C, Shen Z, Wang T (2018). Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review. Catalysis Science & Technology, 8(4): 936–954CrossRefGoogle Scholar
  37. Florian J, Merbahi N, Wattieaux G, Plewa J M, Yousfi M (2015). Comparative studies of double dielectric barrier discharge and microwave argon plasma jets at atmospheric pressure for biomedical applications. IEEE Transactions on Plasma Science, 43(9): 3332–3338CrossRefGoogle Scholar
  38. Fridman A (2008). Plasma Chemistry. New York: Cambridge University PressCrossRefGoogle Scholar
  39. Futamura S, Sugasawa M (2008). Additive effect on energy efficiency and byproduct distribution in VOC decomposition with nonthermal plasma. IEEE Transactions on Industry Applications, 44(1): 40–45CrossRefGoogle Scholar
  40. Gandhi M S, Mok Y S (2012). Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor. Journal of Environmental Sciences-China, 24(7): 1234–1239CrossRefGoogle Scholar
  41. Ge H, Hu D, Li X, Tian Y, Chen Z, Zhu Y (2015). Removal of lowconcentration benzene in indoor air with plasma-MnO2 catalysis system. Journal of Electrostatics, 76: 216–221CrossRefGoogle Scholar
  42. Guo L J, Jiang N, Li J, Shang K F, Lu N, Wu Y (2018a). Abatament of mixed volatile organic cmpounds in a catalytic hybrid surface/packed discharge plasma reactor. Frontiers of Environmental Science & Engineering, 12(2): 15CrossRefGoogle Scholar
  43. Guo T, Du X, Peng Z, Xu L, Dong J, Li J, Cheng P, Zhou Z (2017). Quantification and risk assessment of organic products resulting from non-thermal plasma removal of toluene in nitrogen. Rapid Communications in Mass Spectrometry, 31(17): 1424–1430CrossRefGoogle Scholar
  44. Guo T, Li X, Li J, Peng Z, Xu L, Dong J, Cheng P, Zhou Z (2018b). Online quantification and human health risk assessment of organic byproducts from the removal of toluene in air using non-thermal plasma. Chemosphere, 194: 139–146CrossRefGoogle Scholar
  45. Guo Y, Liao X, He J, Ou W, Ye D (2010). Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene. Catalysis Today, 153(3–4): 176–183CrossRefGoogle Scholar
  46. Guo Y F, Ye D Q, Chen K F, He J C, Chen W L (2006). Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. Journal of Molecular Catalysis A Chemical, 245(1–2): 93–100CrossRefGoogle Scholar
  47. Harling A M, Glover D J, Whitehead J C, Zhang K (2009). The role of ozone in the plasma-catalytic destruction of environmental pollutants. Applied Catalysis B: Environmental, 90(1–2): 157–161CrossRefGoogle Scholar
  48. Hosseinzadeh A, Najafpoor A A, Jafari A J, Jazani R K, Baziar M, Bargozin H, Piranloo F G (2018). Application of response surface methodology and artificial neural network modeling to assess nonthermal plasma efficiency in simultaneous removal of BTEX from waste gases: Effect of operating parameters and prediction performance. Process Safety and Environmental Protection, 119: 261–270CrossRefGoogle Scholar
  49. Hu J, Jiang N, Li J, Shang K, Lu N, Wu Y (2016). Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2–TiO2/zeolite catalyst. Chemical Engineering Journal, 293: 216–224CrossRefGoogle Scholar
  50. Huang H, Ye D, Guan X (2008). The simultaneous catalytic removal of VOCs and O3 in a post-plasma. Catalysis Today, 139(1–2): 43–48CrossRefGoogle Scholar
  51. Iijima S, Nakamura M, Yokoi A, Kubota M, Huang L, Matsuda H (2011). Decomposition of dichloromethane and in situ alkali absorption of resulting halogenated products by a packed-bed nonthermal plasma reactor. Journal of Material Cycles and Waste Management, 13(3): 206–212CrossRefGoogle Scholar
  52. Indarto A, Choi J W, Lee H, Song H K (2008). Decomposition of greenhouse gases by plasma. Environmental Chemistry Letters, 6(4): 215–222CrossRefGoogle Scholar
  53. Iwamura Y, Saito Y (2015). Enhanced decomposition of benzene by non-thermal atmospheric pressure plasma with oxidized titanium electrode. IEEJ Transactions on Fundamentals and Materials, 135(1): 17–21CrossRefGoogle Scholar
  54. Jarrige J, Vervisch P (2009). Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst. Applied Catalysis B: Environmental, 90(1–2): 74–82CrossRefGoogle Scholar
  55. Jia Z, Vega-Gonzalez A, Amar M B, Hassouni K, Tieng S, Touchard S, Kanaev A, Duten X (2013). Acetaldehyde removal using a diphasic process coupling a silver-based nano-structured catalyst and a plasma at atmospheric pressure. Catalysis Today, 208: 82–89CrossRefGoogle Scholar
  56. Jiang L, Nie G, Zhu R, Wang J, Chen J, Mao Y, Cheng Z, Anderson W A (2017). Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts. Journal of Environmental Sciences-China, 55: 266–273CrossRefGoogle Scholar
  57. Jiang N, Hu J, Li J, Shang K, Lu N, Wu Y (2016). Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 184: 355–363CrossRefGoogle Scholar
  58. Jiang N, Lu N, Shang K, Li J, Wu Y (2013). Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation. Journal of Hazardous Materials, 262: 387–393CrossRefGoogle Scholar
  59. Kamal M S, Razzak S A, Hossain M M (2016). Catalytic oxidation of volatile organic compounds (VOCs)–A review. Atmospheric Environment, 140: 117–134CrossRefGoogle Scholar
  60. Karatum O, Deshusses M A (2016). A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chemical Engineering Journal, 294: 308–315CrossRefGoogle Scholar
  61. Karuppiah J, Reddy P M K, Reddy E L, Subrahmanyam C (2013). Catalytic non-thermal plasma reactor for decomposition of dilute chlorobenzene. Plasma Processes and Polymers, 10(12): 1074–1080CrossRefGoogle Scholar
  62. Keidar M, Beilis I (2018). Plasma Engineering, 2nd Edition. Cambridge, Massachusetts: Academic Press, 3–100CrossRefGoogle Scholar
  63. Khoja A H, Tahir M, Amin N A S (2017). Dry reforming of methane using different dielectric materials and DBD plasma reactor configurations. Energy Conversion and Management, 144: 262–274CrossRefGoogle Scholar
  64. Kim D H, Mok Y S, Lee S B (2011). Effect of temperature on the decomposition of trifluoromethane in a dielectric barrier discharge reactor. Thin Solid Films, 519(20): 6960–6963CrossRefGoogle Scholar
  65. Kim H H, Lee Y H, Ogata A, Futamura S (2003). Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition. Catalysis Communications, 4(7): 347–351CrossRefGoogle Scholar
  66. Kim H H, Ogata A, Futamura S (2006). Effect of different catalysts on the decomposition of VOCS using flow-type plasma-driven catalysis. IEEE Transactions on Plasma Science, 34(3): 984–995CrossRefGoogle Scholar
  67. Kim H H, Oh S M, Ogata A, Futamura S (2004). Decomposition of benzene using Ag/TiO2 packed plasma-driven catalyst reactor: influence of electrode configuration and Ag-loading amount. Catalysis Letters, 96(3–4): 189–194CrossRefGoogle Scholar
  68. Kim H H, Oh S M, Ogata A, Futamura S (2005). Decomposition of gasphase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis B: Environmental, 56(3): 213–220CrossRefGoogle Scholar
  69. Kim H H, Teramoto Y, Negishi N, Ogata A (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256: 13–22CrossRefGoogle Scholar
  70. Kim K H, Szulejko J E, Kumar P, Kwon E E, Adelodun A A, Reddy P A K (2017). Air ionization as a control technology for off-gas emissions of volatile organic compounds. Environmental Pollution, 225: 729–743CrossRefGoogle Scholar
  71. Kim K J, Kim J, Son Y S, Chung S G, Kim J C (2012). Advanced oxidation of aromatic VOCs using a pilot system with electron beam–catalyst coupling. Radiation Physics and Chemistry, 81(5): 561–565CrossRefGoogle Scholar
  72. Klett C, Duten X, Tieng S, Touchard S, Jestin P, Hassouni K, Vega-González A (2014). Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process. Journal of Hazardous Materials, 279: 356–364CrossRefGoogle Scholar
  73. Kogelschatz U (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 23(1): 1–46CrossRefGoogle Scholar
  74. Kogelschatz U, Eliasson B, Egli W (1997). Dielectric-barrier discharges. Principle and applications. Le Journal de Physique IV, 07(C4): C4–47–C44–66Google Scholar
  75. Kraus M, Eliasson B, Kogelschatz U, Wokaun A (2001). CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis. Physical Chemistry Chemical Physics, 3(3): 294–300CrossRefGoogle Scholar
  76. Kundu S K, Kennedy E M, Gaikwad V V, Molloy T S, Dlugogorski B Z (2012). Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma. Chemical Engineering Journal, 180: 178–189CrossRefGoogle Scholar
  77. Kwong C W, Chao C Y H, Hui K S, Wan M P (2008). Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment, 42(10): 2300–2311CrossRefGoogle Scholar
  78. Lee H M, Chang M B (2003). Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 23(3): 541–558CrossRefGoogle Scholar
  79. Li Y, Fan Z, Shi J, Liu Z, Shangguan W (2014). Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts. Chemical Engineering Journal, 241: 251–258CrossRefGoogle Scholar
  80. Liang W J, Fang H P, Li J, Zheng F, Li J X, Jin Y Q (2011). Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide. Journal of Electrostatics, 69(3): 206–213CrossRefGoogle Scholar
  81. Liang W J, Li J, Li J X, Zhu T, Jin Y Q (2010). Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 175(1–3): 1090–1095CrossRefGoogle Scholar
  82. Liang W J, Ma L, Liu H, Li J (2013). Toluene degradation by nonthermal plasma combined with a ferroelectric catalyst. Chemosphere, 92(10): 1390–1395CrossRefGoogle Scholar
  83. Linga Reddy E, Biju V M, Subrahmanyam C (2012a). Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma. Applied Energy, 95: 87–92CrossRefGoogle Scholar
  84. Linga Reddy E, Karuppiah J, Renken A, Kiwi Minsker L, Subrahmanyam C (2012b). Kinetics of the decomposition of hydrogen sulfide in a dielectric barrier discharge reactor. Chemical Engineering & Technology, 35(11): 2030–2034CrossRefGoogle Scholar
  85. Lu B, Zhang X, Yu X, Feng T, Yao S (2006). Catalytic oxidation of benzene using DBD corona discharges. Journal of Hazardous Materials, 137(1): 633–637CrossRefGoogle Scholar
  86. Lu N, Li J, Wang X, Wang T, Wu Y (2012). Application of doubledielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration. Plasma Chemistry and Plasma Processing, 32(1): 109–121CrossRefGoogle Scholar
  87. Ma C, Dai B, Liu P, Zhou N, Shi A, Ban L, Chen H (2014). Deep oxidative desulfurization of model fuel using ozone generated by dielectric barrier discharge plasma combined with ionic liquid extraction. Journal of Industrial and Engineering Chemistry, 20(5): 2769–2774CrossRefGoogle Scholar
  88. Ma T J, Lan W S (2015). Ethylene decomposition with a wire-plate dielectric barrier discharge reactor: parameters and kinetic study. International Journal of Environmental Science and Technology, 12(12): 3951–3956CrossRefGoogle Scholar
  89. Magureanu M, Mandache N B, Eloy P, Gaigneaux E M, Parvulescu V I (2005). Plasma-assisted catalysis for volatile organic compounds abatement. Applied Catalysis B: Environmental, 61(1–2): 12–20CrossRefGoogle Scholar
  90. Magureanu M, Mandache N B, Parvulescu V I, Subrahmanyam C, Renken A, Kiwi-Minsker L (2007). Improved performance of nonthermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Applied Catalysis B: Environmental, 74(3–4): 270–277CrossRefGoogle Scholar
  91. Mei D, Tu X (2017). Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design. Journal of CO2 Utilization, 19: 68–78CrossRefGoogle Scholar
  92. Mfopara A, Kirkpatrick M J, Odic E (2009). Dilute methane treatment by atmospheric pressure dielectric barrier discharge: effects of water vapor. Plasma Chemistry and Plasma Processing, 29(2): 91–102CrossRefGoogle Scholar
  93. Mista W, Kacprzyk R (2008). Decomposition of toluene using nonthermal plasma reactor at room temperature. Catalysis Today, 137(2–4): 345–349CrossRefGoogle Scholar
  94. Mlotek M, Reda E, Józwik P, Krawczyk K, Bojar Z (2015). Plasmacatalytic decomposition of cyclohexane in gliding discharge reactor. Applied Catalysis A, General, 505: 150–158CrossRefGoogle Scholar
  95. Mok Y S, Lee S B, Oh J H, Ra K S, Sung B H (2008). Abatement of trichloromethane by using nonthermal plasma reactors. Plasma Chemistry and Plasma Processing, 28(6): 663–676CrossRefGoogle Scholar
  96. Mustafa M F, Fu X, Liu Y, Abbas Y, Wang H, Lu W (2018). Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor. Journal of Hazardous Materials, 347: 317–324CrossRefGoogle Scholar
  97. Mustafa M F, Fu X, Lu W, Liu Y, Abbas Y, Wang H, Arslan M T (2017a). Application of non-thermal plasma technology on fugitive methane destruction: configuration and optimization of double dielectric barrier discharge reactor. Journal of Cleaner Production, 174: 670–677CrossRefGoogle Scholar
  98. Mustafa M F, Liu Y, Duan Z, Guo H, Xu S, Wang H, Lu W (2017b). Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. Journal of Hazardous Materials, 327: 35–43CrossRefGoogle Scholar
  99. Narengerile W T, Watanabe T (2012). Acetone decomposition by water plasmas at atmospheric pressure. Chemical Engineering Science, 69(1): 296–303CrossRefGoogle Scholar
  100. Nguyen H H, Kim K S (2015). Combination of plasmas and catalytic reactions for CO2 reforming of CH4 by dielectric barrier discharge process. Catalysis Today, 256(Part 1): 88–95CrossRefGoogle Scholar
  101. Ni M J, Shen X, Gao X, Wu Z L, Lu H, Li Z S, Luo Z Y, Cen K F (2011). Naphthalene decomposition in a DC corona radical shower discharge. Journal of Zhejiang University. Science A, 12(1): 71–77CrossRefGoogle Scholar
  102. Obradovic B M, Sretenovic G B, Kuraica M M (2011). A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coalcombustion flue gas. Journal of Hazardous Materials, 185(2–3): 1280–1286CrossRefGoogle Scholar
  103. Oda T (2003). Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air. Journal of Electrostatics, 57(3–4): 293–311CrossRefGoogle Scholar
  104. Oda T, Kumada A, Tanaka K, Takahashi T, Masuda S (1995). Low temperature atmospheric pressure discharge plasma processing for volatile organic compounds. Journal of Electrostatics, 35(1): 93–101CrossRefGoogle Scholar
  105. Ondarts M, Hajji W, Outin J, Bejat T, Gonze E (2017). Non-thermal plasma for indoor air treatment: toluene degradation in a corona discharge at ppbv levels. Chemical Engineering Research & Design, 118: 194–205CrossRefGoogle Scholar
  106. Pacheco M, Alva E, Valdivia R, Pacheco J, Rivera C, Santana A, Huertas J, Lefort B, Estrada N (2012). Removal of main exhaust gases of vehicles by a double dielectric barrier discharge. 14th Latin American Workshop on Plasma Physics (Lawpp 2011), 370: 1–7Google Scholar
  107. Padhi S K, Gokhale S (2014). Biological oxidation of gaseous VOCs–rotating biological contactor a promising and eco-friendly technique. Journal of Environmental Chemical Engineering, 2(4): 2085–2102CrossRefGoogle Scholar
  108. Park C W, Byeon J H, Yoon K Y, Park J H, Hwang J (2011). Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge. Separation and Purification Technology, 77(1): 87–93CrossRefGoogle Scholar
  109. Qin C, Guo H, Liu P, Bai W, Huang J, Huang X, Dang X, Yan D (2018). Toluene abatement through adsorption and plasma oxidation using ZSM-5 mixed with γ-Al2O3, TiO2 or BaTiO3. Journal of Industrial and Engineering Chemistry, 63: 449–455CrossRefGoogle Scholar
  110. Ragazzi M, Tosi P, Rada E C, Torretta V, Schiavon M (2014). Effluents from MBT plants: plasma techniques for the treatment of VOCs. Waste Management (New York, N.Y.), 34(11): 2400–2406CrossRefGoogle Scholar
  111. Raju B R, Reddy E L, Karuppiah J, Reddy P M K, Subrahmanyam C (2013). Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds. Journal of Chemical Sciences, 125(3): 673–678CrossRefGoogle Scholar
  112. Rezaei E, Soltan J, Chen N (2013). Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: effect of catalyst loading. Applied Catalysis B: Environmental, 136–137: 239–247CrossRefGoogle Scholar
  113. Roland U, Holzer F, Kopinke F D (2002). Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today, 73(3–4): 315–323CrossRefGoogle Scholar
  114. Roland U, Holzer F, Kopinke F D (2005). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of γ-Al2O3. Applied Catalysis B: Environmental, 58(3–4): 217–226Google Scholar
  115. Rutscher A (2008). Characteristics of low-temperature plasmas under nonthermal conditions–a short summary. In: Hippler R, Kersten H, Schmidt M, Schoenbach K H, eds. Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2nd Edition. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 1: 1–14Google Scholar
  116. Schiavon M, Scapinello M, Tosi P, Ragazzi M, Torretta V, Rada E C (2015). Potential of non-thermal plasmas for helping the biodegradation of volatile organic compounds (VOCs) released by waste management plants. Journal of Cleaner Production, 104: 211–219CrossRefGoogle Scholar
  117. Schiavon M, Schiorlin M, Torretta V, Brandenburg R, Ragazzi M (2017a). Non-thermal plasma assisting the biofiltration of volatile organic compounds. Journal of Cleaner Production, 148: 498–508CrossRefGoogle Scholar
  118. Schiavon M, Torretta V, Casazza A, Ragazzi M (2017b). Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: a review. Water, Air, and Soil Pollution, 228(10): 1–20CrossRefGoogle Scholar
  119. Schmidt M, Jõgi I, Holub M, Brandenburg R (2015). Non-thermal plasma based decomposition of volatile organic compounds in industrial exhaust gases. International Journal of Environmental Science and Technology, 12(12): 3745–3754CrossRefGoogle Scholar
  120. Shahna F, Bahrami A, Alimohammadi I, Yarahmadi R, Jaleh B, Gandomi M, Ebrahimi H, Ad-Din Abedi K (2017). Chlorobenzene degeradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: Effect of photocatalyst on CO2 selectivity and byproducts reduction. Journal of Hazardous Materials, 324: 544–553CrossRefGoogle Scholar
  121. Shi Y, Shao Z, Shou T, Tian R, Jiang J, He Y (2016). Abatement of gaseous xylene using double dielectric barrier discharge plasma with in situ UV light: operating parameters and byproduct analysis. Plasma Chemistry and Plasma Processing, 36(6): 1501–1515CrossRefGoogle Scholar
  122. Shu Y, Ji J, Xu Y, Deng J, Huang H, He M, Leung D Y C, Wu M, Liu S, Liu S, Liu G, Xie R, Feng Q, Zhan Y, Fang R, Ye X (2018). Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Applied Catalysis B: Environmental, 220: 78–87CrossRefGoogle Scholar
  123. Sivachandiran L, Karuppiah J, Subrahmanyam C (2012). DBD plasma reactor for oxidative decomposition of chlorobenzene. International Journal of Chemical Reactor Engineering, 10(1): 1–14CrossRefGoogle Scholar
  124. Sobacchi M G, Saveliev A V, Fridman A A, Gutsol A F, Kennedy L A (2003). Experimental assessment of pulsed corona discharge for treatment of VOC emissions. Plasma Chemistry and Plasma Processing, 23(2): 347–370CrossRefGoogle Scholar
  125. Song H, Hu F, Peng Y, Li K, Bai S, Li J (2018). Non-thermal plasma catalysis for chlorobenzene removal over CoMn/TiO2 and CeMn/ TiO2: Synergistic effect of chemical catalysis and dielectric constant. Chemical Engineering Journal, 347: 447–454CrossRefGoogle Scholar
  126. Song Y H, Kim S J, Choi K I, Yamamoto T (2002). Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. Journal of Electrostatics, 55(2): 189–201CrossRefGoogle Scholar
  127. Subrahmanyam C, Renken A, Kiwi-Minsker L (2006). Catalytic abatement of volatile organic compounds assisted by non-thermal plasma: Part II. Optimized catalytic electrode and operating conditions. Applied Catalysis B: Environmental, 65(1–2): 157–162Google Scholar
  128. Subrahmanyam C, Renken A, Kiwi-Minsker L (2010). Catalytic nonthermal plasma reactor for abatement of toluene. Chemical Engineering Journal, 160(2): 677–682CrossRefGoogle Scholar
  129. Sultana S, Vandenbroucke A M, Leys C, De Geyter N, Morent R (2015). Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review. Catalysts, 5(2): 718–746CrossRefGoogle Scholar
  130. Sultana S, Ye Z, Veerapandian S K P, Löfberg A, De Geyter N, Morent R, Giraudon J M, Lamonier J F (2018). Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catalysis Today, 307: 20–28CrossRefGoogle Scholar
  131. Tang X, Feng F, Ye L, Zhang X, Huang Y, Liu Z, Yan K (2013). Removal of dilute VOCs in air by post-plasma catalysis over Agbased composite oxide catalysts. Catalysis Today, 211: 39–43CrossRefGoogle Scholar
  132. Thevenet F, Guaitella O, Puzenat E, Guillard C, Rousseau A (2008). Influence of water vapour on plasma/photocatalytic oxidation efficiency of acetylene. Applied Catalysis B: Environmental, 84(3–4): 813–820CrossRefGoogle Scholar
  133. Thevenet F, Guillard C, Rousseau A (2014). Acetylene photocatalytic oxidation using continuous flow reactor: Gas phase and adsorbed phase investigation, assessment of the photocatalyst deactivation. Chemical Engineering Journal, 244: 50–58CrossRefGoogle Scholar
  134. Trinh Q H, Kim S H, Mok Y S (2016). Removal of dilute nitrous oxide from gas streams using a cyclic zeolite adsorption–plasma decomposition process. Chemical Engineering Journal, 302: 12–22CrossRefGoogle Scholar
  135. Vandenbroucke A M, Morent R, De Geyter N, Leys C (2011). Nonthermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195: 30–54CrossRefGoogle Scholar
  136. Vandenbroucke A M, Nguyen Dinh M T, Nuns N, Giraudon J M, De Geyter N, Leys C, Lamonier J F, Morent R (2016). Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chemical Engineering Journal, 283: 668–675CrossRefGoogle Scholar
  137. Wang B, Yao S, Peng Y, Xu Y (2018). Toluene removal over TiO2-BaTiO3 catalysts in an atmospheric dielectric barrier discharge. Journal of Environmental Chemical Engineering, 6(4): 3819–3826CrossRefGoogle Scholar
  138. Wang C, Zhang G, Wang X (2012). Comparisons of discharge characteristics of a dielectric barrier discharge with different electrode structures. Vacuum, 86(7): 960–964CrossRefGoogle Scholar
  139. Wang S, Zhang L, Long C, Li A (2014). Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents. Journal of Colloid and Interface Science, 428: 185–190CrossRefGoogle Scholar
  140. Whitehead J C (2010). Plasma catalysis: A solution for environmental problems. Pure and Applied Chemistry, 82(6): 1329–1336CrossRefGoogle Scholar
  141. Wu T, Wang X (2015). Emission of oxygenated volatile organic compounds (OVOCs) during the aerobic decomposition of orange wastes. Journal of Environmental Sciences-China, 33: 69–77CrossRefGoogle Scholar
  142. Wu T, Wang X, Li D, Yi Z (2010). Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmospheric Environment, 44(39): 5065–5071CrossRefGoogle Scholar
  143. Xiao G, Xu W, Wu R, Ni M, Du C, Gao X, Luo Z, Cen K (2014). Nonthermal plasmas for VOCs abatement. Plasma Chemistry and Plasma Processing, 34(5): 1033–1065CrossRefGoogle Scholar
  144. Xu S, Lu W, Liu Y, Ming Z, Liu Y, Meng R, Wang H (2017a). Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing. Waste Management, 63: 41–48CrossRefGoogle Scholar
  145. Xu X, Wu J, Xu W, He M, Fu M, Chen L, Zhu A, Ye D (2017b). Highefficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catalysis Today, 281: 527–533CrossRefGoogle Scholar
  146. Yan X, Sun Y, Zhu T, Fan X (2013). Conversion of carbon disulfide in air by non-thermal plasma. Journal of Hazardous Materials, 261: 669–674CrossRefGoogle Scholar
  147. Yang Z, Yi H, Tang X, Zhao S, Yu Q, Gao F, Zhou Y, Wang J, Huang Y, Yang K, Shi Y (2017). Potential demonstrations of “hot spots” presence by adsorption-desorption of toluene vapor onto granular activated carbon under microwave radiation. Chemical Engineering Journal, 319: 191–199CrossRefGoogle Scholar
  148. Ye T, Xiong Z, Yu J X, Jisong B (2016). Experimental study on biomass and gasification for hydrogen. Journal of Computational and Theoretical Nanoscience, 13(2): 1130–1135CrossRefGoogle Scholar
  149. Ye Z, Zhang Y, Li P, Yang L, Zhang R, Hou H (2008). Feasibility of destruction of gaseous benzene with dielectric barrier discharge. Journal of Hazardous Materials, 156(1–3): 356–364CrossRefGoogle Scholar
  150. Yi C H, Lee Y H, Woo Kim D, Yeom G Y (2003). Characteristic of a dielectric barrier discharges using capillary dielectric and its application to photoresist etching. Surface and Coatings Technology, 163–164: 723–727CrossRefGoogle Scholar
  151. Zhang H, Li K, Li L, Liu L, Meng X, Sun T, Jia J, Fan M (2018). High efficient styrene mineralization through novel NiO-TiO2-Al2O3 packed pre-treatment/treatment/post-treatment dielectric barrier discharge plasma. Chemical Engineering Journal, 343: 759–769CrossRefGoogle Scholar
  152. Zhang H, Li K, Shu C, Lou Z, Sun T, Jia J (2014a). Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor. Chemical Engineering Journal, 256: 107–118CrossRefGoogle Scholar
  153. Zhang H, Li K, Sun T, Jia J, Lou Z, Feng L (2014b). Removal of styrene using dielectric barrier discharge plasmas combined with sol–gel prepared TiO2 coated γ-Al2O3. Chemical Engineering Journal, 241: 92–102CrossRefGoogle Scholar
  154. Zhang H, Li K, Sun T, Jia J, Lou Z, Yao S, Wang G (2015). The combination effect of dielectric barrier discharge (DBD) and TiO2 catalytic process on styrene removal and the analysis of the byproducts and intermediates. Research on Chemical Intermediates, 41(1): 175–189CrossRefGoogle Scholar
  155. Zhu R, Mao Y, Jiang L, Chen J (2015a). Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts. Chemical Engineering Journal, 279: 463–471CrossRefGoogle Scholar
  156. Zhu T, Li R R, Ma M F, Li X (2017). Influence of energy efficiency on VOCs decomposition in non-thermal plasma reactor. International Journal of Environmental Science and Technology, 14(7): 1505–1512CrossRefGoogle Scholar
  157. Zhu T, Li X, Zhao W, Xia N, Wang X (2015b). Experimental research on toluene degradation in plasma as the driving force of nanomaterials. Open Journal of Applied Sciences, 05(10): 586–594CrossRefGoogle Scholar
  158. Zhu T, Wang R, Bian W, Chen Y (2018). Advanced oxidation technology for H2S odor gas using non-thermal plasma. Plasma Science and Technology, 20(5): 1–6CrossRefGoogle Scholar
  159. Zhu X, Gao X, Qin R, Zeng Y, Qu R, Zheng C, Tu X (2015c). Plasmacatalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 170–171: 293–300CrossRefGoogle Scholar
  160. Zhu X, Gao X, Yu X, Zheng C, Tu X (2015d). Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catalysis Today, 256: 108–114CrossRefGoogle Scholar
  161. Zhu X, Liu S, Cai Y, Gao X, Zhou J, Zheng C, Tu X (2016). Postplasma catalytic removalof methanol over Mn–Ce catalysts in an atmospheric dielectricbarrier discharge. Applied Catalysis B: Environmental, 183: 124–132CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenjing Lu
    • 1
    Email author
  • Yawar Abbas
    • 1
  • Muhammad Farooq Mustafa
    • 2
  • Chao Pan
    • 1
  • Hongtao Wang
    • 1
  1. 1.School of EnvironmentTsinghua UniversityBeijingChina
  2. 2.Department of Environmental Design, Health and Nutritional SciencesAllama Iqbal Open UniversityIslamabadPakistan

Personalised recommendations