Advertisement

Phenolic compounds removal by wet air oxidation based processes

  • Linbi Zhou
  • Hongbin Cao
  • Claude Descorme
  • Yongbing Xie
Review Article
Part of the following topical collections:
  1. Special Issue—Advanced Treatment Technology for Industrial Wastewaters

Abstract

Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) are efficient processes to degrade organic pollutants in water. In this paper, we especially reviewed the WAO and CWAO processes for phenolic compounds degradation. It provides a comprehensive introduction to the CWAO processes that could be beneficial to the scientists entering this field of research. The influence of different reaction parameters, such as temperature, oxygen pressure, pH, stirring speed are analyzed in detail; Homogenous catalysts and heterogeneous catalysts including carbon materials, transitional metal oxides and noble metals are extensively discussed, among which Cu based catalysts and Ru catalysts were shown to be the most active. Three different kinds of the reactor implemented for the CWAO (autoclave, packed bed and membrane reactors) are illustrated and compared. To enhance the degradation efficiency and reduce the cost of the CWAO process, biological degradation can be combined to develop an integrated technology.

Keywords

Wet air oxidation Catalytic wet air oxidation Phenolic compounds Heterogeneous catalysts Mechanism 

Notes

Acknowledgments

This work was financially supported by the National Science Fund for Distinguished Young Scholars (No. 51425405), Beijing Natural Science Foundation (No. 8172043) and Chinese Academy of Sciences (ZDRW-ZS-2016-5-3).

References

  1. 1.
    Autenrieth R L, Bonner J S, Akgerman A, Okaygun M, McCreary E M. Biodegradation of phenolic watstes. Journal of Hazardous Materials, 1991, 28(1–2): 29–53CrossRefGoogle Scholar
  2. 2.
    Stich H F. The beneficial and hazardous effects of simple phenoliccompounds. Mutation Research, 1991, 259(3–4): 307–324CrossRefGoogle Scholar
  3. 3.
    Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment, 2014, 53(8): 2215–2234CrossRefGoogle Scholar
  4. 4.
    Rappoport Z. The Chemistry of Phenols. New York: JohnWiley & Sons, 2004Google Scholar
  5. 5.
    Veeresh G S, Kumar P, Mehrotra I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research, 2005, 39(1): 154–170CrossRefGoogle Scholar
  6. 6.
    Ribeiro A R, Nunes O C, Pereira M F, Silva A M. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environment International, 2015, 75: 33–51CrossRefGoogle Scholar
  7. 7.
    Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999, 53(1): 51–59CrossRefGoogle Scholar
  8. 8.
    Debellefontaine H, Chakchouk M, Foussard J N, Tissot D, Striolo P. Treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation(R). Environmental Pollution, 1996, 92(2): 155–164CrossRefGoogle Scholar
  9. 9.
    Dietrich M J, Rall T L, Canney P J. Wet air oxidation of hazardous organics in wastewater. Environment and Progress, 1985, 4(3): 171–177CrossRefGoogle Scholar
  10. 10.
    Freeman H. Standard Handbook of Hazardous Waste Treatment and Disposal. New York: McGraw-Hill Book Co., 1989Google Scholar
  11. 11.
    Kim K H, Ihm S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. Journal of Hazardous Materials, 2011, 186(1): 16–34CrossRefGoogle Scholar
  12. 12.
    Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2): 143–160CrossRefGoogle Scholar
  13. 13.
    Levec J, Pintar A. Catalytic wet-air oxidation processes: a review. Catalysis Today, 2007, 124(3–4): 172–184CrossRefGoogle Scholar
  14. 14.
    Guo J, Al-Dahhan M. Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst. Chemical Engineering Science, 2005, 60(3): 735–746CrossRefGoogle Scholar
  15. 15.
    Imamura S. Catalytic and noncatalytic wet oxidation. Industrial & Engineering Chemistry Research, 1999, 38(5): 1743–1753CrossRefGoogle Scholar
  16. 16.
    Bhargava S K, Tardio J, Prasad J, Foger K, Akolekar D B, Grocott S C. Wet oxidation and catalytic wet oxidation. Industrial & Engineering Chemistry Research, 2006, 45(4): 1221–1258CrossRefGoogle Scholar
  17. 17.
    Devlin H R, Harris I J. Mechanism of the oxidation of aqueous phenol of aqueous phenol with dissolved oxygen. Industrial & Engineering Chemistry Fundamentals, 1984, 23(4): 387–392CrossRefGoogle Scholar
  18. 18.
    Kolaczkowski S T, Beltran F J, McLurgh D B, Rivas F J. Wet air oxidation of phenol: factors that may influence global kinetics. Process Safety and Environmental Protection, 1997, 75(4 B4): 257–265CrossRefGoogle Scholar
  19. 19.
    Pintar A, Levec J. Catalytic-oxidation of aqueous p-chlorophenol and p-nitrophenol solutions. Chemical Engineering Science, 1994, 49(24): 4391–4407CrossRefGoogle Scholar
  20. 20.
    Joglekar H S, Samant S D, Joshi J B. Kinetics of wet air oxidation of phenol and substitued phenols. Water Research, 1991, 25(2): 135–145CrossRefGoogle Scholar
  21. 21.
    Rivas F J, Kolaczkowski S T, Beltran F J, McLurgh D B. Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chemical Engineering Science, 1998, 53(14): 2575–2586CrossRefGoogle Scholar
  22. 22.
    Lin S H, Chuang T S. Combined treatment of phenol of phenolic wastewater by wet air oxidation and activated sludge. Toxicological and Environmental Chemistry, 1994, 44(3–4): 243–258CrossRefGoogle Scholar
  23. 23.
    Shibaeva L V. Oxidation of phenol with molecular oxygen in aqueous solutions I. The kinetics of the oxidation of phenol with oxygen. Kinetics and Catalysis, 1969, 10: 832–836Google Scholar
  24. 24.
    Willms R S, Balinsky AM, Reible D D,Wetzel DM, Harrison D P. Aqueous phase oxidation: the intrinsic kinetics of single organic compounds. Industrial & Engineering Chemistry Research, 1987, 26(1): 148–154CrossRefGoogle Scholar
  25. 25.
    Vicente J, Rosal R, Diaz M. Noncatalytic oxidation of phenol in aqueous solutions. Industrial & Engineering Chemistry Research, 2002, 41(1): 46–51CrossRefGoogle Scholar
  26. 26.
    Pruden B, Le H. Wet air oxidation of soluble components in waste water. Canadian Journal of Chemical Engineering, 1976, 54(4): 319–325CrossRefGoogle Scholar
  27. 27.
    Jaulin L, Chornet E. High shear jet-mixers as two-phase reactors: an application to the oxidation of phenol in aqueous media. Canadian Journal of Chemical Engineering, 1987, 65(1): 64–70CrossRefGoogle Scholar
  28. 28.
    Mundale V D, Joglekar H S, Kalam A, Joshi J B. Regeneration of spent acitivated carbon by wet air oxidation. Canadian Journal of Chemical Engineering, 1991, 69(5): 1149–1159CrossRefGoogle Scholar
  29. 29.
    Vaidya P D, Mahajani V V. Insight into subcritical wet oxidation of phenol. Advances in Environmental Research, 2002, 6(4): 429–439CrossRefGoogle Scholar
  30. 30.
    Arena F, Italiano C, Raneri A, Saja C. Mechanistic and kinetic insights into the wet air oxidation of phenol with oxygen (CWAO) by homogeneous and heterogeneous transition-metal catalysts. Applied Catalysis B: Environmental, 2010, 99(1–2): 321–328CrossRefGoogle Scholar
  31. 31.
    Tufano V. A multi-step kinetic model for phenol oxidation in highpressure water. Chemical Engineering & Technology, 1993, 16(3): 186–190CrossRefGoogle Scholar
  32. 32.
    Gopalan S, Savage P E. A reaction network model for phenol oxidation in supercritical water. AIChE Journal, 1995, 41(8): 1864–1873CrossRefGoogle Scholar
  33. 33.
    Gopalan S, Savage P E. Reaction mechanism for phenol oxidation in supercritical water. Journal of Physical Chemistry, 1994, 98(48): 12646–12652CrossRefGoogle Scholar
  34. 34.
    Suárez-Ojeda M E, Carrera J, Metcalfe I S, Font J. Wet air oxidation (WAO) as a precursor to biological treatment of substituted phenols: refractory nature of the WAO intermediates. Chemical Engineering Journal, 2008, 144(2): 205–212CrossRefGoogle Scholar
  35. 35.
    Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G. Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorganica Chimica Acta, 2015, 431: 101–109CrossRefGoogle Scholar
  36. 36.
    Fu D M, Zhang F F, Wang L Z, Yang F, Liang X M. Simultaneous removal of nitrobenzene and phenol by homogenous catalytic wet air oxidation. Chinese Journal of Catalysis, 2015, 36(7): 952–956CrossRefGoogle Scholar
  37. 37.
    Priyanka S V, Srivastava V C, Mall I D. Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Separation and Purification Technology, 2014, 125: 284–290CrossRefGoogle Scholar
  38. 38.
    Messele S A, Soares O S G P, Órfão J J M, Stüber F, Bengoa C, Fortuny A, Fabregat A, Font J. Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol. Applied Catalysis B: Environmental, 2014, 154–155: 329–338CrossRefGoogle Scholar
  39. 39.
    Ayusheev A B, Taran O P, Seryak I A, Podyacheva O Y, Descorme C, Besson M, Kibis L S, Boronin A I, Romanenko A I, Ismagilov Z R, Parmon V. Ruthenium nanoparticles supported on nitrogendoped carbon nanofibers for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2014, 146: 177–185CrossRefGoogle Scholar
  40. 40.
    Podyacheva O Y, Ismagilov Z R, Boronin A I, Kibis L S, Slavinskaya E M, Noskov A S, Shikina N V, Ushakov V A, Ischenko A V. Platinum nanoparticles supported on nitrogencontaining carbon nanofibers. Catalysis Today, 2012, 186(1): 42–47CrossRefGoogle Scholar
  41. 41.
    Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Gómez-Serrano V. Preparation of activated carbon-metal oxide hybrid catalysts: textural characterization. Fuel Processing Technology, 2014, 126: 95–103CrossRefGoogle Scholar
  42. 42.
    Akyurtlu J F, Akyurtlu A, Kovenklioglu S. Catalytic oxidation of phenol in aqueous solutions. Catalysis Today, 1998, 40(4): 343–352CrossRefGoogle Scholar
  43. 43.
    Fortuny A, Bengoa C, Font J, Fabregat A. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. Journal of Hazardous Materials, 1999, 64(2): 181–193CrossRefGoogle Scholar
  44. 44.
    Yang S, Zhu W, Wang J, Chen Z. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. Journal of Hazardous Materials, 2008, 153(3): 1248–1253CrossRefGoogle Scholar
  45. 45.
    Espinosa de los Monteros A, Lafaye G, Cervantes A, Del Angel G, Barbier J, Torres G. Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides. Catalysis Today, 2015, 258: 564–569CrossRefGoogle Scholar
  46. 46.
    Messele S A. Homogenous and heterogenous aqueous phase oxidation of phenol with fenton like process. Doctoral Thesis universitat Rovira I Virgili 2014Google Scholar
  47. 47.
    Shalagina A E, Ismagilov Z R, Podyacheva O Y, Kvon R I, Ushakov V A. Synthesis of nitrogen-containing carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture. Carbon, 2007, 45(9): 1808–1820CrossRefGoogle Scholar
  48. 48.
    Ribeiro R S, Silva A M T, Figueiredo J L, Faria J L, Gomes H T. Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants: a review. Applied Catalysis B: Environmental, 2016, 187: 428–460CrossRefGoogle Scholar
  49. 49.
    Baricot M, Dastgheib S A, Fortuny A, Stüber F, Bengoa Ch, Fabregat A. Catalytic wet air oxidation of phenol by surface modified activated carbons. Canadian Journal of Chemical Engineering, 2004, 69(1): 1–6Google Scholar
  50. 50.
    Janecki D, Szczotka A, Burghardt A, Bartelmus G. Modelling wetair oxidation of phenol in a trickle-bed reactor using active carbon as a catalyst. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(3): 596–607CrossRefGoogle Scholar
  51. 51.
    Fortuny A, Font J, Fabregat A. Wet air oxidation of phenol using active carbon as catalyst. Applied Catalysis B: Environmental, 1998, 19(3–4): 165–173CrossRefGoogle Scholar
  52. 52.
    Soares O S G P, Rocha R P, Gonçalves A G, Figueiredo J L, Órfão J J M, Pereira M F R. Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 192: 296–303CrossRefGoogle Scholar
  53. 53.
    Yang S, Li X, Zhu W, Wang J, Descorme C. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon, 2008, 46(3): 445–452CrossRefGoogle Scholar
  54. 54.
    Rocha R P, Sousa J P S, Silva A M T, Pereira M F R, Figueiredo J L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role of the basic nature induced by the surface chemistry. Applied Catalysis B: Environmental, 2011, 104(3–4): 330–336CrossRefGoogle Scholar
  55. 55.
    Yang S X, Sun Y, Yang H W, Wan J F. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts. Frontiers of Environmental Science & Engineering, 2014, 9(3): 436–443CrossRefGoogle Scholar
  56. 56.
    Wang J, Fu W, He X, Yang S, Zhu W. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway. Joural of Enviromental Sciences, 2014, 26(8): 1741–1749Google Scholar
  57. 57.
    Quintanilla A, Menéndez N, Tornero J, Casas J A, Rodríguez J J. Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol: Influence on activity, selectivity and stability. Applied Catalysis B: Environmental, 2008, 81(1–2): 105–114CrossRefGoogle Scholar
  58. 58.
    Oliviero L, Barbier-Jr J, Duprez D, Guerrero-Ruiz A, Bachiller- Baeza B, Rodriguez-Ramos I. Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru-CeO2/C catalysts. Applied Catalysis B: Environmental, 2000, 25(4): 267–275CrossRefGoogle Scholar
  59. 59.
    Stuber F, Polaert I, Delmas H, Font J, Fortuny A, Fabregat A. Catalytic wet air oxidation of phenol using active carbon: performance of discontinuous and continuous reactors. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 76(7): 743–751CrossRefGoogle Scholar
  60. 60.
    Carriazo J, Guelou E, Barrault J, Tatibouet J M, Molina R, Moreno S. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity. Catalysis Today, 2005, 107–08: 126–132CrossRefGoogle Scholar
  61. 61.
    Pires C A, dos Santos A C C, Jordao E. Oxidation of phenol in aqueous solution with copper oxide catalysts supported on g- Al2O3, pillared clay and TiO2: comparsion of the performance and costs associated with each catalyst. Brazilian Journal of Chemical Engineering, 2015, 32(4): 837–848CrossRefGoogle Scholar
  62. 62.
    Ksontini N, Najjar W, Ghorbel A. Al-Fe pillared clays: synthesis, characterization and catalytic wet air oxidation activity. Journal of Physics and Chemistry of Solids, 2008, 69(5–6): 1112–1115CrossRefGoogle Scholar
  63. 63.
    Kloprogge J T. Synthesis of smectites and porous pillared clay catalysts: a review. Journal of Porous Materials, 1998, 5(1): 5–41CrossRefGoogle Scholar
  64. 64.
    Guo J, Al-Dahhan M. Activity and stability of iron-containing pillared clay catalysts for wet air oxidation of phenol. Applied Catalysis A: General, 2006, 299: 175–184CrossRefGoogle Scholar
  65. 65.
    Wu Q, Hu X, Yue P L, Zhao X S, Lu G Q. Copper/MCM-41 as catalyst for the wet oxidation of phenol. Applied Catalysis B: Environmental, 2001, 32(3): 151–156CrossRefGoogle Scholar
  66. 66.
    Lin S S Y, Chang D J, Wang C H, Chen C C. Catalytic wet air oxidation of phenol by CeO2 catalyst—effect of reaction conditions. Water Research, 2003, 37(4): 793–800CrossRefGoogle Scholar
  67. 67.
    Chen I P, Lin S S, Wang C H, Chang S H. CWAO of phenol using CeO2/g-Al2O3 with promoter effectiveness of promoter addition and catalyst regeneration. Chemosphere, 2007, 66(1): 172–178CrossRefGoogle Scholar
  68. 68.
    Chang L Z, Chen I P, Lin S S. An assessment of the suitable operating conditions for the CeO2/g-Al2O3 catalyzed wet air oxidation of phenol. Chemosphere, 2005, 58(4): 485–492CrossRefGoogle Scholar
  69. 69.
    Hocevar S, Krasovec U O, Orel B, Arico A S, Kim H. CWO of phenol on two differently prepared CuO-CeO2 catalysts. Applied Catalysis B: Environmental, 2000, 28(2): 113–125CrossRefGoogle Scholar
  70. 70.
    Delgado J J, Chen X, Pérez-Omil J A, Rodríguez-Izquierdo J M, Cauqui M A. The effect of reaction conditions on the apparent deactivation of Ce-Zr mixed oxides for the catalytic wet oxidation of phenol. Catalysis Today, 2012, 180(1): 25–33CrossRefGoogle Scholar
  71. 71.
    Parvas M, Haghighi M, Allahyari S. Degradation of phenol via wet air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance. Environmental Technology, 2014, 35 (9–12): 1140–1149CrossRefGoogle Scholar
  72. 72.
    Parvas M, Haghighi M, Allahyari S. Catalytic wet air oxidation of phenol over ultrasound-assisted synthesized Ni/CeO2-ZrO2 nanocatalyst used in wastewater treatment. Arabian Journal of Chemistry, 2014Google Scholar
  73. 73.
    Arena F, Italiano C, Drago Ferrante G, Trunfio G, Spadaro L. A mechanistic assessment of the wet air oxidation activity of MnCeOx catalyst toward toxic and refractory organic pollutants. Applied Catalysis B: Environmental, 2014, 144: 292–299CrossRefGoogle Scholar
  74. 74.
    Chen H, Sayari A, Adnot A, Larachi F. Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Applied Catalysis B: Environmental, 2001, 32(3): 195–204CrossRefGoogle Scholar
  75. 75.
    Gutiérrez M, Pina P, Torres M, Cauqui M A, Herguido J. Catalytic wet oxidation of phenol using membrane reactors: a comparative study with slurry-type reactors. Catalysis Today, 2010, 149(3–4): 326–333CrossRefGoogle Scholar
  76. 76.
    Aihua X, Chenglin S. Catalytic behaviour and copper leaching of Cu0.10Zn0.90Al1.90Fe0.10O4 spinel for catalytic wet air oxidation of phenol. Environmental Technology, 2012, 33(10–12): 1339–1344Google Scholar
  77. 77.
    Toledo J A, Valenzuela M A, Bosch P, Armendariz H, Montoya A, Nava N, Vazquez A. Effect of Al3+ introduction into hydrothermally prepared ZnFe2O4. Applied Catalysis A: General, 2000, 198(1–2): 235–245CrossRefGoogle Scholar
  78. 78.
    Xu A, Yang M, Qiao R, Du H, Sun C. Activity and leaching features of zinc-aluminum ferrites in catalytic wet oxidation of phenol. Journal of Hazardous Materials, 2007, 147(1–2): 449–456CrossRefGoogle Scholar
  79. 79.
    Alejandre A, Medina F, Rodriguez X, Salagre P, Cesteros Y, Sueiras J E. Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions. Applied Catalysis B: Environmental, 2001, 30(1–2): 195–207CrossRefGoogle Scholar
  80. 80.
    Li N, Descorme C, Besson M. Application of Ce0.33Zr0.63Pr0.04O2- supported noble metal catalysts in the catalytic wet air oxidation of 2-chlorophenol: influence of the reaction conditions. Applied Catalysis B: Environmental, 2008, 80(3–4): 237–247CrossRefGoogle Scholar
  81. 81.
    Lafaye G, Barbier J Jr, Duprez D. Impact of cerium-based support oxides in catalytic wet air oxidation: conflicting role of redox and acid-base properties. Catalysis Today, 2015, 253: 89–98CrossRefGoogle Scholar
  82. 82.
    Chen I P, Lin S S, Wang C H, Chang L, Chang J S. Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2004, 50(1): 49–58CrossRefGoogle Scholar
  83. 83.
    Yamaguchi T, Ikeda N, Hattori H, Tanabe K. Surface and catalytic propeties of cerium oxide. Journal of Catalysis, 1981, 67(2): 324–330CrossRefGoogle Scholar
  84. 84.
    Jampaiah D, Venkataswamy P, Tur K M, Ippolito S J, Bhargava S K, Reddy B M. Effect of MnOx loading on structural, surface, and catalytic properties of CeO2-MnOx mixed oxides prepared by Sol-Gel method. Zeitschrift fur Anorganische und Allgemeine Chemie, 2015, 641(6): 1141–1149CrossRefGoogle Scholar
  85. 85.
    Wu X D, Liang Q, Weng D, Fan J, Ran R. Synthesis of CeO2- MnOx mixed oxides and catalytic performance under oxygen-rich condition. Catalysis Today, 2007, 126(3–4): 430–435CrossRefGoogle Scholar
  86. 86.
    Khachatryan L, Lomnicki S, Dellinger B. An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol. Chemosphere, 2007, 68(9): 1741–1750CrossRefGoogle Scholar
  87. 87.
    Rocha M A L, Del Ángel G, Torres-Torres G, Cervantes A, Vázquez A, Arrieta A, Beltramini J N. Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catalysis Today, 2015, 250: 145–154CrossRefGoogle Scholar
  88. 88.
    Imamura S, Fukuda I, Ishida S. Wet oxidatrion catalyzed by ruthenium supported on cerium(IV) oxides. Industria & Engineering Chemistry Research, 1988, 27(4): 718–721CrossRefGoogle Scholar
  89. 89.
    Keav S, Espinosa de los Monteros A, Barbier J, Duprez D. Wet air oxidation of phenol over Pt and Ru catalysts supported on ceriumbased oxides: resistance to fouling and kinetic modelling. Applied Catalysis B: Environmental, 2014, 150–151: 402–410CrossRefGoogle Scholar
  90. 90.
    Wei H, Yan X, He S, Sun C. Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts. Catalysis Today, 2013, 201: 49–56CrossRefGoogle Scholar
  91. 91.
    Wang J, Zhu W, Yang S, Wang W, Zhou Y. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts. Applied Catalysis B: Environmental, 2008, 78(1–2): 30–37CrossRefGoogle Scholar
  92. 92.
    Martín-Hernández M, Carrera J, Suárez-Ojeda M E, Besson M, Descorme C. Catalytic wet air oxidation of a high strength pnitrophenol wastewater over Ru and Pt catalysts: influence of the reaction conditions on biodegradability enhancement. Applied Catalysis B: Environmental, 2012, 123–124: 141–150CrossRefGoogle Scholar
  93. 93.
    Hamoudi S, Sayari A, Belkacemi K, Bonneviot L, Larachi F. Catalytic wet oxidation of phenol over PtxAg1–xMnO2/CeO2 catalysts. Catalysis Today, 2000, 62(4): 379–388CrossRefGoogle Scholar
  94. 94.
    Massa P, Ivorra F, Haure P, Cabello F M, Fenoglio R. Catalytic wet air oxidation of phenol aqueous solutions by 1% Ru/CeO2-Al2O3 catalysts prepared by different methods. Catalysis Communications, 2007, 8(3): 424–428CrossRefGoogle Scholar
  95. 95.
    Yu C, Meng X, Chen G, Zhao P. Catalytic wet air oxidation of high-concentration organic pollutants by upflow packed-bed reactor using a Ru-Ce catalyst derived from a Ru3(CO)12 precursor. RSC Advances, 2016, 6(27): 22633–22638CrossRefGoogle Scholar
  96. 96.
    Sang-Kyung K, Son-Ki I. Effects of Ce addition and Pt precursor on the activity of Pt/Al2O3 catalysts for wet oxidation of phenol, 2002: 1967–1972Google Scholar
  97. 97.
    Li N, Descorme C, Besson M. Catalytic wet air oxidation of 2- chlorophenol over Ru loaded CexZr1–xO2 solid solutions. Applied Catalysis B: Environmental, 2007, 76(1–2): 92–100CrossRefGoogle Scholar
  98. 98.
    Manole C C, Julcour-Lebigue C, Wilhelm A M, Delmas H. Catalytic oxidation of 4-hydroxybenzoic acid on activated carbon in batch autoclave and fixed-bed reactors. Industrial & Engineering Chemistry Research, 2007, 46(25): 8388–8396CrossRefGoogle Scholar
  99. 99.
    Iojoiu E E, Walmsley J C, Raeder H, Miachon S, Dalmon J A. Catalytic membrane structure influence on the pressure effects in an interfacial contactor catalytic membrane reactor applied to wet air oxidation. Catalysis Today, 2005, 104(2–4): 329–335CrossRefGoogle Scholar
  100. 100.
    Mantzavinos D, Psillakis E. Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2004, 79(5): 431–454CrossRefGoogle Scholar
  101. 101.
    Guisasola A, Baeza J A, Carrera J, Casas C, Lafuente J. An off-line respirometric procedure to determine inhibition and toxicity of biodegradable compounds in biomass from an industrial WWTP. Water Science and Technology, 2003, 48(11–12): 267–275Google Scholar
  102. 102.
    Mantzavinos D, Sahibzada M, Livingston A G, Metcalfe I S, Hellgardt K. Wastewater treatment: wet air oxidation as a precursor to biological treatment. Catalysis Today, 1999, 53(1): 93–106CrossRefGoogle Scholar
  103. 103.
    Mantzavinos D, Hellenbrand R, Livingston A G, Metcalfe I S. Beneficial combination of wet oxidation, membrane separation and biodegradation processes for treatment of polymer processing wastewaters. Canadian Journal of Chemical Engineering, 2000, 78 (2): 418–422CrossRefGoogle Scholar
  104. 104.
    Hellenbrand R, Mantzavinos D, Metcalfe I S, Livingston A G. Integration of wet oxidation and nanofiltration for treatment of recalcitrant organics in wastewater. Industrial & Engineering Chemistry Research, 1997, 36(12): 5054–5062CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Linbi Zhou
    • 1
    • 2
  • Hongbin Cao
    • 1
    • 2
  • Claude Descorme
    • 3
  • Yongbing Xie
    • 2
  1. 1.School of Chemical Engineering & TechnologyTianjin UniversityTianjinChina
  2. 2.Division of Environmental Engineering and Technology, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  3. 3.Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON)CNRSVilleurbanne CedexFrance

Personalised recommendations