Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations

  • Xinfeng Wang
  • Tao Wang
  • Likun XueEmail author
  • Wei Nie
  • Zheng Xu
  • Steven C. N. Poon
  • Wenxing Wang
Research Article


Peroxyacetyl nitrate (PAN) is an important indicator of photochemical smog and has adverse effects on human health and vegetation growth. A rapid and highly selective technique of thermal dissociation–chemical ionization mass spectrometry (TD-CIMS) was recently developed to measure the abundance of PAN in real time; however, it may be subject to artifact in the presence of nitric oxide (NO). In this study, we tested the interference of the PAN signal induced by NO, evaluated the performance of TD-CIMS in an urban environment, and investigated the concentration and formation of PAN in urban Hong Kong. NO caused a significant underestimation of the PAN signal in TD-CIMS, with the underestimation increasing sharply with NO concentration and decreasing slightly with PAN abundance. A formula was derived to link the loss of PAN signal with the concentrations of NO and PAN, which can be used for data correction in PAN measurements. The corrected PAN data from TDCIMS were consistent with those from the commonly used gas chromatography with electron capture detection, which confirms the utility of TD-CIMS in an urban environment in which NO is abundant. In autumn of 2010, the hourly average PAN mixing ratio varied from 0.06 ppbv to 5.17 ppbv, indicating the occurrence of photochemical pollution in urban Hong Kong. The formation efficiency of PAN during pollution episodes was as high as 3.9 to 5.9 ppbv per 100 ppbv ozone. The efficiency showed a near-linear increase with NO x concentration, suggesting a control policy of NOx reduction for PAN pollution.


TD-CIMS Peroxyacetyl nitrate Interference Photochemical pollution Formation efficiency 



This work was supported by the Environment and Conservation Fund of Hong Kong (Project No. 2009-07), National Natural Science Foundation of China (Grant Nos. 41275123, 21407094 and 91544213), China Postdoctoral Science Foundation (No. 2014M561932), and the Jiangsu Collaborative Innovation Center for Climate Change. The authors thank Dr. Pamela Holt for proofreading the manuscript.


  1. 1.
    Stephens E R. The formation, reactions, and properties of peroxyacyl nitrates (PANs) in photochemical air pollution. Advances in Environmental Science and Technology, 1969, 1: 119–146Google Scholar
  2. 2.
    Vyskocil A, Viau C, Lamy S. Peroxyacetyl nitrate: review of toxicity. Human & Experimental Toxicology, 1998, 17(4): 212–220CrossRefGoogle Scholar
  3. 3.
    Parrish D D, Xu J, Croes B, Shao M. Air quality improvement in Los Angeles—Perspectives for developing cities. Frontiers of Environmental Science & Engineering, 2016, 10(5): 11CrossRefGoogle Scholar
  4. 4.
    Taylor O C. Importance of peroxyacetyl nitrate (PAN) as a phytotoxic air pollutant. Journal of the Air Pollution Control Association, 1969, 19(5): 347–351CrossRefGoogle Scholar
  5. 5.
    Temple P J, Taylor O C. World-wide ambient measurements of peroxyacetyl nitrate (PAN) and implications for plant injury. Atmospheric Environment, 1983, 17(8): 1583–1587CrossRefGoogle Scholar
  6. 6.
    Ridley B A, Shetter J D, Gandrud BW, Salas L J, Singh H B, Carroll M A, Hübler G, Albritton D L, Hastie D R, Schiff H I, Mackay G I, Karechi D R, Davis D D, Bradshaw J D, Rodgers M O, Sandholm S T, Torres A L, Condon E P, Gregory G L, Beck S M. Ratios of peroxyacetyl nitrate to active nitrogen observed during aircraft flights over the eastern pacific oceans and continental United States. Journal of Geophysical Research, 1990, 95(D7): 10179–10192CrossRefGoogle Scholar
  7. 7.
    Singh H B, Salas L J, Ridley B A, Shetter J D, Donahue N M, Fehsenfeld F C, Fahey D W, Parrish D D, Williams E J, Liu S C, Hubler G, Murphy P C. Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere. Nature, 1985, 318(6044): 347–349CrossRefGoogle Scholar
  8. 8.
    Orlando J J, Tyndall G S, Calvert J G. Thermal decomposition pathways for peroxyacetyl nitrate (PAN): implications for atmospheric methyl nitrate levels. Atmospheric Environment. Part A, General Topics, 1992, 26(17): 3111–3118CrossRefGoogle Scholar
  9. 9.
    Singh H B, Salas L J, Viezee W. Global distribution of peroxyacetyl nitrate. Nature, 1986, 321(6070): 588–591CrossRefGoogle Scholar
  10. 10.
    Gaffney J S, Marley N A, Cunningham M M, Doskey P V. Measurements of peroxyacyl nitrates (PANS) in Mexico City: implications for megacity air quality impacts on regional scales. Atmospheric Environment, 1999, 33(30): 5003–5012CrossRefGoogle Scholar
  11. 11.
    Zhang J B, Xu Z, Yang G, Wang B. Peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in urban and suburban atmospheres of Beijing, China. Atmospheric Chemistry and Physics Discussion, 2011, 11(3): 8173–8206CrossRefGoogle Scholar
  12. 12.
    Williams J, Roberts J M, Bertman S B, Stroud C A, Fehsenfeld F C, Baumann K, Buhr M P, Knapp K, Murphy P C, Nowick M, Williams E J. A method for the airborne measurement of PAN, PPN, and MPAN. Journal of Geophysical Research, 2000, 105(D23): 28943–28960CrossRefGoogle Scholar
  13. 13.
    Flocke F, Weinheimer A, Swanson A, Roberts J, Schmitt R, Shertz S. On the measurement of PANs by gas chromatography and electron capture detection. Journal of Atmospheric Chemistry, 2005, 52(1): 19–43CrossRefGoogle Scholar
  14. 14.
    Zhang G, Mu Y, Liu J, Mellouki A. Direct and simultaneous determination of trace-level carbon tetrachloride, peroxyacetyl nitrate, and peroxypropionyl nitrate using gas chromatographyelectron capture detection. Journal of Chromatography. A, 2012, 1266(2012): 110–115Google Scholar
  15. 15.
    Zheng W, Flocke F M, Tyndall G S, Swanson A, Orlando J J, Roberts J M, Huey L G, Tanner D J. Characterization of a thermal decomposition chemical ionization mass spectrometer for the measurement of peroxy acyl nitrates (PANs) in the atmosphere. Atmospheric Chemistry and Physics, 2011, 11(13): 6529–6547CrossRefGoogle Scholar
  16. 16.
    Hastie D R, Gray J, Langford V S, Maclagan R G A R, Milligan D B, McEwan M J. Real-time measurement of peroxyacetyl nitrate using selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24(3): 343–348CrossRefGoogle Scholar
  17. 17.
    Huey L G. Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and future directions. Mass Spectrometry Reviews, 2007, 26(2): 166–184CrossRefGoogle Scholar
  18. 18.
    Slusher D L, Huey L G, Tanner D J, Flocke F M, Roberts J M. A thermal dissociation-chemical ionization mass spectrometry (TDCIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide. Journal of Geophysical Research, 2004, 109(D19): D19315CrossRefGoogle Scholar
  19. 19.
    Wolfe G M, Thornton J A, McNeill V F, Jaffe D A, Reidmiller D, Chand D, Smith J, Swartzendruber P, Flocke F, Zheng W. Influence of trans-Pacific pollution transport on acyl peroxy nitrate abundances and speciation at Mount Bachelor Observatory during INTEX-B. Atmospheric Chemistry and Physics, 2007, 7(20): 5309–5325CrossRefGoogle Scholar
  20. 20.
    Turnipseed A A, Huey L G, Nemitz E, Stickel R, Higgs J, Tanner D J, Slusher D L, Sparks J P, Flocke F, Guenther A. Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOy to a coniferous forest. Journal of Geophysical Research, D, Atmospheres, 2006, 111 (D9): D09304CrossRefGoogle Scholar
  21. 21.
    Wolfe G M, Thornton J A, Yatavelli R L N, McKay M, Goldstein A H, LaFranchi B, Min K E, Cohen R C. Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN) above a Ponderosa pine forest. Atmospheric Chemistry and Physics, 2009, 9(2): 615–634CrossRefGoogle Scholar
  22. 22.
    LaFranchi B, Wolfe G, Thornton J, Harrold S, Browne E, Min K, Wooldridge P, Gilman J, Kuster W, Goldan P, de Gouw J A, McKay M, Goldstein A H, Ren X, Mao J, Cohen R C. Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. Atmospheric Chemistry and Physics, 2009, 9(19): 7623–7641CrossRefGoogle Scholar
  23. 23.
    Roiger A, Aufmhoff H, Stock P, Arnold F, Schlager H. An aircraftborne chemical ionization-ion trap mass spectrometer (CI-ITMS) for fast PAN and PPN measurements. Atmospheric Measurement Techniques, 2011, 4(2): 173–188CrossRefGoogle Scholar
  24. 24.
    Phillips G J, Pouvesle N, Thieser J, Schuster G, Axinte R, Fischer H, Williams J, Lelieveld J, Crowley J N. Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes. Atmospheric Chemistry and Physics, 2013, 13(3): 1129–1139CrossRefGoogle Scholar
  25. 25.
    Wang Z, Shao M, Chen L, Tao M, Zhong L, Chen D, Fan M, Wang Y, Wang X. Space view of the decadal variation for typical air pollutants in the Pearl River Delta (PRD) region in China. Frontiers of Environmental Science & Engineering, 2016, 10(5): 9CrossRefGoogle Scholar
  26. 26.
    Xue L, Wang T, Wang X, Blake D R, Gao J, Nie W, Gao R, Gao X, Xu Z, Ding A, Huang Y, Lee S, Chen Y, Wang S, Chai F, Zhang Q, Wang W. On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. Environmental Pollution, 2014, 195(195): 39–47CrossRefGoogle Scholar
  27. 27.
    Wang X, Wang T, Yan C, Tham Y J, Xue L, Xu Z, Zha Q. Large daytime signals of N2O5 and NO3 inferred at 62 amu in a TD-CIMS: chemical interference or a real atmospheric phenomenon? Atmospheric Measurement Techniques, 2014, 7(1): 1–12CrossRefGoogle Scholar
  28. 28.
    Zhang J, Wang T, Ding A, Zhou X, Xue L, Poon C, Wu W, Gao J, Zuo H, Chen J, Zhang X C, Fan S J. Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China. Atmospheric Environment, 2009, 43(2): 228–237CrossRefGoogle Scholar
  29. 29.
    Xu Z, Wang T, Xue L, Louie P K K, Luk C W Y, Gao J, Wang S, Chai F, Wang W. Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China. Atmospheric Environment, 2013, 76(2013): 221–226CrossRefGoogle Scholar
  30. 30.
    Lee G, Jang Y, Lee H, Han J S, Kim K R, Lee M. Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea. Chemosphere, 2008, 73(4): 619–628CrossRefGoogle Scholar
  31. 31.
    Grosjean E, Grosjean D, Fraser M P, Cass G R. Air quality model evaluation data for organics. 3. Peroxyacetyl nitrate and peroxypropionyl nitrate in Los Angeles air. Environmental Science & Technology, 1996, 30(9): 2704–2714CrossRefGoogle Scholar
  32. 32.
    Xu Z, Xue L, Wang T, Xia T, Gao Y, Louie P K K, Luk C W Y. Measurements of peroxyacetyl nitrate at a background site in the Pearl River delta region: production efficiency and regional transport. Aerosol and Air Quality Research, 2015, 15(1): 833–841Google Scholar
  33. 33.
    Liu Z, Wang Y, Gu D, Zhao C, Huey L G, Stickel R, Liao J, Shao M, Zhu T, Zeng L, Liu S C, Chang C C, Amoroso A, Costabile F. Evidence of reactive aromatics as a major source of peroxy acetyl nitrate over China. Environmental Science & Technology, 2010, 44(18): 7017–7022CrossRefGoogle Scholar
  34. 34.
    Zhang J M. Measurement of atmospheric peroxyacetyl nitrate (PAN) and the implications to photochemical pollution. Dissertation for the Master Degree. Hong Kong: The Hong Kong Polytechnic University, 2009Google Scholar
  35. 35.
    Wang B, Shao M, Roberts J, Yang G, Yang F, Hu M, Zeng L, Zhang Y, Zhang J. Ground-based on-line measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in the Pearl River Delta, China. International Journal of Environmental Analytical Chemistry, 2010, 90(7): 548–559CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xinfeng Wang
    • 1
  • Tao Wang
    • 1
    • 2
  • Likun Xue
    • 1
    Email author
  • Wei Nie
    • 3
  • Zheng Xu
    • 3
  • Steven C. N. Poon
    • 2
  • Wenxing Wang
    • 1
  1. 1.Environment Research InstituteShandong UniversityJinanChina
  2. 2.Department of Civil and Environmental EngineeringHong Kong Polytechnic UniversityHong KongChina
  3. 3.Institute for Climate and Global Change Research & School of Atmospheric SciencesNanjing UniversityNanjingChina

Personalised recommendations