Advertisement

Microbial mediated arsenic biotransformation in wetlands

  • Si-Yu Zhang
  • Paul N. Williams
  • Jinming Luo
  • Yong-Guan ZhuEmail author
Feature Article

Abstract

Arsenic (As) is a pervasive environmental toxin and carcinogenic metalloid. It ranks at the top of the US priority List of Hazardous Substances and causes worldwide human health problems. Wetlands, including natural and artificial ecosystems (i.e. paddy soils) are highly susceptible to As enrichment; acting not only as repositories for water but a host of other elemental/chemical moieties. While macroscale processes (physical and geological) supply As to wetlands, it is the micro-scale biogeochemistry that regulates the fluxes of As and other trace elements from the semi-terrestrial to neighboring plant/aquatic/atmospheric compartments. Among these fine-scale events, microbial mediated As biotransformations contribute most to the element’s changing forms, acting as the ‘switch’ in defining a wetland as either a source or sink of As. Much of our understanding of these important microbial catalyzed reactions follows relatively recent scientific discoveries. Here we document some of these key advances, with focuses on the implications that wetlands and their microbial mediated transformation pathways have on the global As cycle, the chemistries of microbial mediated As oxidation, reduction and methylation, and future research priorities areas.

Keywords

Arsenic Wetland Microbes Switch 

References

  1. 1.
    Oremland R S, Stolz J F. The ecology of arsenic. Science, 2003, 300(5621): 939–944CrossRefGoogle Scholar
  2. 2.
    Zhu Y G, Yoshinaga M, Zhao F J, Rosen B P. Earth abides arsenic biotransformations. Annual Review of Earth and Planetary Sciences, 2014, 42(0): 443–467CrossRefGoogle Scholar
  3. 3.
    Bhattacharya P, Welch A H, Stollenwerk K G, McLaughlin M J, Bundschuh J, Panaullah G. Arsenic in the environment: Biology and Chemistry. Science of the Total Environment, 2007, 379(2-3): 109–120CrossRefGoogle Scholar
  4. 4.
    Bentley R, Chasteen T G. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiology and Molecular Biology Reviews, 2002, 66(2): 250–271CrossRefGoogle Scholar
  5. 5.
    Silbergeld E K, Nachman K. The environmental and public health risks associated with arsenical use in animal feeds. Annals of the New York Academy of Sciences, 2008, 1140(1): 346–357CrossRefGoogle Scholar
  6. 6.
    Murray L A, Raab A, Marr I L, Feldmann J. Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Applied Organometallic Chemistry, 2003, 17(9): 669–674CrossRefGoogle Scholar
  7. 7.
    Moore J W, Ramamoorthy S. Heavy metals in natural waters: applied monitoring and impact assessment. New York: Springer Science & Business Media, 2012Google Scholar
  8. 8.
    Zedler J B, Kercher S. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 2005, 30(1): 39–74CrossRefGoogle Scholar
  9. 9.
    Keddy P A. Wetland Ecology: Principles and Conservation. Cambridge: Cambridge University Press, 2010CrossRefGoogle Scholar
  10. 10.
    Chmura G L, Anisfeld S C, Cahoon D R, Lynch J C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 2003, 17(4): 1–12CrossRefGoogle Scholar
  11. 11.
    Wang S, Wang Y, Feng X, Zhai L, Zhu G. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Applied Microbiology and Biotechnology, 2011, 90(2): 779–787CrossRefGoogle Scholar
  12. 12.
    Qin J, Lehr C R, Yuan C, Le X C, McDermott T R, Rosen B P. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13): 5213–5217CrossRefGoogle Scholar
  13. 13.
    Bhakta J N, Munekage Y. Spatial distribution and contamination status of arsenic, cadmium and lead in some coastal shrimp (Macrobrachium rosenbergii) farming ponds of Viet Nam. Pacific Journal of Science and Technology, 2009, 11: 606–615Google Scholar
  14. 14.
    Wang S, Mulligan C N. Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Science of the Total Environment, 2006, 366(2-3): 701–721CrossRefGoogle Scholar
  15. 15.
    Chapman P M, Wang F, Janssen C, Persoone G, Allen H E. Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55(10): 2221–2243CrossRefGoogle Scholar
  16. 16.
    National Standard of PR China. National Standard of PR China Marine Sediment Quality (GB 18668–2002). Beijing: Standards Press of China, 2002 (in Chinese)Google Scholar
  17. 17.
    Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Canadian Environmental Quality Guidelines (1999). Canadian Council of Ministers of the Environment Winnipeg, 2001Google Scholar
  18. 18.
    Bai J, Xiao R, Zhang K, Gao H. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. Journal of Hydrology (Amsterdam), 2012, 450: 244–253CrossRefGoogle Scholar
  19. 19.
    Gorenc S, Kostaschuk R, Chen Z. Spatial variations in heavy metals on tidal flats in the Yangtze Estuary, China. Environmental Geology, 2004, 45(8): 1101–1108CrossRefGoogle Scholar
  20. 20.
    Wilkin R T, Ford R G. Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland. Chemical Geology, 2006, 228(1): 156–174CrossRefGoogle Scholar
  21. 21.
    Kraus U, Wiegand J. Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar River Valley (SW Spain). Science of the Total Environment, 2006, 367(2-3): 855–871CrossRefGoogle Scholar
  22. 22.
    Stroud J L, Khan M A, Norton G J, Islam M R, Dasgupta T, Zhu Y G, Price A H, Meharg A A, McGrath S P, Zhao F J. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environmental Science & Technology, 2011, 45(10): 4262–4269CrossRefGoogle Scholar
  23. 23.
    Zhang S Y, Zhao F J, Sun G X, Su J Q, Yang X R, Li H, Zhu Y G. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environmental Science & Technology, 2015, 49(7): 4138–4146CrossRefGoogle Scholar
  24. 24.
    Alam M, Ali M, Al-Harbi N A, Choudhury T R. Contamination status of arsenic, lead, and cadmium of different wetland waters. Toxicological and Environmental Chemistry, 2011, 93(10): 1934–1945CrossRefGoogle Scholar
  25. 25.
    Huq S I, Rahman A, Sultana N, Naidu R. Extent and Severity of Arsenic Contamination in Soils of Bangladesh. Fate of Arsenic in the Environment. Dhaka: Bangladesh University of Engineering and Technology, 2003, 69–84Google Scholar
  26. 26.
    Huq S I, Shoaib J U M. Soils and humans. The Soils of Bangladesh. 2013, 125–129Google Scholar
  27. 27.
    Lu Y, Adomako E E, Solaiman A R, Islam M R, Deacon C, Williams P N, Rahman G K, Meharg A A. Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice. Environmental Science & Technology, 2009, 43(6): 1724–1729CrossRefGoogle Scholar
  28. 28.
    Meharg A A, Rahman M M. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science & Technology, 2003, 37(2): 229–234CrossRefGoogle Scholar
  29. 29.
    Williams P N, Zhang H, Davison W, Meharg A A, Hossain M, Norton G J, Brammer H, Islam M R. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environmental Science & Technology, 2011, 45(14): 6080–6087CrossRefGoogle Scholar
  30. 30.
    Polizzotto M L, Kocar B D, Benner S G, Sampson M, Fendorf S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 2008, 454(7203): 505–508CrossRefGoogle Scholar
  31. 31.
    Meharg A A. Venomous Earth: How Arsenic Caused the World’s Worst Mass Poisoning. London: Palgrave Macmillan Ltd., 2005Google Scholar
  32. 32.
    Meharg A A, Zhao F J. Biogeochemistry of Arsenic in Paddy Environments. In Arsenic & Rice. 2012, 71–101CrossRefGoogle Scholar
  33. 33.
    Williams P N, Villada A, Deacon C, Raab A, Figuerola J, Green A J, Feldmann J, Meharg A A. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science & Technology, 2007, 41(19): 6854–6859CrossRefGoogle Scholar
  34. 34.
    Huang H, Jia Y, Sun G X, Zhu Y G. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Environmental Science & Technology, 2012, 46(4): 2163–2168CrossRefGoogle Scholar
  35. 35.
    Jia Y, Huang H, Zhong M, Wang F H, Zhang L M, Zhu Y G. Microbial arsenic methylation in soil and rice rhizosphere. Environmental Science & Technology, 2013, 47(7): 3141–3148Google Scholar
  36. 36.
    Williams P N, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Meharg A A, Zhu Y G. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science & Technology, 2009, 43(3): 637–642CrossRefGoogle Scholar
  37. 37.
    Zhao F J, Harris E, Yan J, Ma J, Wu L, Liu W, McGrath S P, Zhou J, Zhu Y G. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice. Environmental Science & Technology, 2013, 47(13): 7147–7154CrossRefGoogle Scholar
  38. 38.
    Zhang S Y, Zhao F J, Sun G X, Su J Q, Yang X R, Li H, Zhu Y G. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environmental Science & Technology, 2015, 49(7): 4138–4146CrossRefGoogle Scholar
  39. 39.
    Mestrot A, Feldmann J, Krupp E M, Hossain M S, Roman-Ross G, Meharg A A. Field fluxes and speciation of arsines emanating from soils. Environmental Science & Technology, 2011, 45(5): 1798–1804CrossRefGoogle Scholar
  40. 40.
    Grimalt J O, Ferrer M, Macpherson E. The mine tailing accident in Aznalcollar. Science of the Total Environment, 1999, 242(1–3): 3–11CrossRefGoogle Scholar
  41. 41.
    Mateo R, Taggart MA, Green A J, Cristófol C, Ramis A, Lefranc H, Figuerola J, Meharg A A. Altered porphyrin excretion and histopathology of greylag geese (Anser anser) exposed to soil contaminated with lead and arsenic in the Guadalquivir Marshes, southwestern Spain. Environmental Toxicology and Chemistry, 2006, 25(1): 203–212CrossRefGoogle Scholar
  42. 42.
    Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 2011, 83(7): 925–932CrossRefGoogle Scholar
  43. 43.
    Xu X Y, McGrath S P, Meharg A A, Zhao F J. Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science & Technology, 2008, 42(15): 5574–5579CrossRefGoogle Scholar
  44. 44.
    Cummings D E, Caccavo F, Fendorf S, Rosenzweig R F. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environmental Science & Technology, 1999, 33(5): 723–729CrossRefGoogle Scholar
  45. 45.
    Takahashi Y, Minamikawa R, Hattori K H, Kurishima K, Kihou N, Yuita K. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environmental Science & Technology, 2004, 38(4): 1038–1044CrossRefGoogle Scholar
  46. 46.
    Harvey C F, Swartz C H, Badruzzaman A B, Keon-Blute N, Yu W, Ali M A, Jay J, Beckie R, Niedan V, Brabander D, Oates P M, Ashfaque K N, Islam S, Hemond H F, Ahmed M F. Arsenic mobility and groundwater extraction in Bangladesh. Science, 2002, 298(5598): 1602–1606CrossRefGoogle Scholar
  47. 47.
    Bostick B C, Chen C, Fendorf S. Arsenite retention mechanisms within estuarine sediments of Pescadero, CA. Environmental Science & Technology, 2004, 38(12): 3299–3304CrossRefGoogle Scholar
  48. 48.
    Lizama A K, Fletcher T D, Sun G. Removal processes for arsenic in constructed wetlands. Chemosphere, 2011, 84(8): 1032–1043CrossRefGoogle Scholar
  49. 49.
    Morse J W. Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Marine Chemistry, 1994, 46(1): 1–6CrossRefGoogle Scholar
  50. 50.
    Saulnier I, Mucci A. Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada. Applied Geochemistry, 2000, 15(2): 191–210CrossRefGoogle Scholar
  51. 51.
    Kirk G. The Biogeochemistry of Submerged Soils. London: John Wiley & Sons, 2004CrossRefGoogle Scholar
  52. 52.
    Ye J, Rensing C, Rosen B P, Zhu Y G. Arsenic biomethylation by photosynthetic organisms. Trends in Plant Science, 2012, 17(3): 155–162CrossRefGoogle Scholar
  53. 53.
    Maguffin S C, Kirk M F, Daigle A R, Hinkle S R, Jin Q. Substantial contribution of biomethylation to aquifer arsenic cycling. Nature Geoscience, 2015, 8(4): 290–293CrossRefGoogle Scholar
  54. 54.
    Drahota P, Falteisek L, Redlich A, Rohovec J, Matoušek T, Cepicka I. Microbial effects on the release and attenuation of arsenic in the shallow subsurface of a natural geochemical anomaly. Environmental Pollution, 2013, 180: 84–91CrossRefGoogle Scholar
  55. 55.
    Mumford A C, Barringer J L, Benzel W M, Reilly P A, Young L Y. Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Water Research, 2012, 46(9): 2859–2868CrossRefGoogle Scholar
  56. 56.
    Ohtsuka T, Yamaguchi N, Makino T, Sakurai K, Kimura K, Kudo K, Homma E, Dong D T, Amachi S. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Environmental Science & Technology, 2013, 47(12): 6263–6271Google Scholar
  57. 57.
    Slyemi D, Bonnefoy V. How prokaryotes deal with Arsenic. Environmental Microbiology Reports, 2012, 4(6): 571–586Google Scholar
  58. 58.
    Silver S, Phung L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 2005, 71(2): 599–608CrossRefGoogle Scholar
  59. 59.
    Rosen B P, Liu Z. Transport pathways for arsenic and selenium: a minireview. Environment International, 2009, 35(3): 512–515CrossRefGoogle Scholar
  60. 60.
    Mukhopadhyay R, Rosen B P, Phung L T, Silver S. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiology Reviews, 2002, 26(3): 311–325CrossRefGoogle Scholar
  61. 61.
    Stolz J F, Basu P, Santini J M, Oremland R S. Arsenic and selenium in microbial metabolism. Annual Review of Microbiology, 2006, 60(1): 107–130CrossRefGoogle Scholar
  62. 62.
    Jia Y, Huang H, Chen Z, Zhu Y G. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environmental Science & Technology, 2014, 48(2): 1001–1007CrossRefGoogle Scholar
  63. 63.
    Cai L, Yu K, Yang Y, Chen B W, Li X D, Zhang T. Metagenomic exploration reveals high levels of microbial arsenic metabolism genes in activated sludge and coastal sediments. Applied Microbiology and Biotechnology, 2013, 97(21): 9579–9588CrossRefGoogle Scholar
  64. 64.
    Chang J S, Yoon I H, Lee J H, Kim K R, An J, Kim K W. Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environmental Geochemistry and Health, 2010, 32(2): 95–105CrossRefGoogle Scholar
  65. 65.
    Macur R E, Jackson C R, Botero L M, McDermott T R, Inskeep W P. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environmental Science & Technology, 2004, 38(1): 104–111CrossRefGoogle Scholar
  66. 66.
    Afkar E, Lisak J, Saltikov C, Basu P, Oremland R S, Stolz J F. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiology Letters, 2003, 226(1): 107–112CrossRefGoogle Scholar
  67. 67.
    Saltikov C W, Newman D K. Genetic identification of a respiratory arsenate reductase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10983–10988CrossRefGoogle Scholar
  68. 68.
    Krafft T, Macy J M. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. European Journal of Biochemistry, 1998, 255(3): 647–653CrossRefGoogle Scholar
  69. 69.
    van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B. Arsenics as bioenergetic substrates. Biochimica et Biophysica Acta (BBA). Bioenergetics, 2013, 1827(2): 176–188CrossRefGoogle Scholar
  70. 70.
    Malasarn D, Saltikov CW, Campbell K M, Santini J M, Hering J G, Newman D K. arrA is a reliable marker for As(V) respiration. Science, 2004, 306(5695): 455–455CrossRefGoogle Scholar
  71. 71.
    Hoeft S E, Kulp T R, Stolz J F, Hollibaugh J T, Oremland R S. Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Applied and Environmental Microbiology, 2004, 70(5): 2741–2747CrossRefGoogle Scholar
  72. 72.
    Bhattacharjee H, Rosen B P. Arsenic Metabolism in Prokaryotic and Eukaryotic Microbes. Molecular Microbiology of Heavy Metals. In: Nies D H, Silver S, eds. Heidelberg: Springer, 2002, 371–406Google Scholar
  73. 73.
    Islam F S, Gault A G, Boothman C, Polya D A, Charnock J M, Chatterjee D, Lloyd J R. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 2004, 430(6995): 68–71CrossRefGoogle Scholar
  74. 74.
    Fendorf S, Michael H A, van Geen A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science, 2010, 328(5982): 1123–1127CrossRefGoogle Scholar
  75. 75.
    Song B, Chyun E, Jaffé P R, Ward B B. Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiology Ecology, 2009, 68(1): 108–117CrossRefGoogle Scholar
  76. 76.
    Héry M, Van Dongen B E, Gill F, Mondal D, Vaughan D J, Pancost R D, Polya D A, Lloyd J R. Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology, 2010, 8(2): 155–168CrossRefGoogle Scholar
  77. 77.
    Oremland R S, Stolz J F. Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 2005, 13(2): 45–49CrossRefGoogle Scholar
  78. 78.
    Tufano K J, Reyes C, Saltikov CW, Fendorf S. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environmental Science & Technology, 2008, 42(22): 8283–8289CrossRefGoogle Scholar
  79. 79.
    Sri Lakshmi Sunita M, Prashant S, Bramha Chari P V, Nageswara Rao S, Balaravi P, Kavi Kishor P B. Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype. Ecotoxicology (London, England), 2012, 21(1): 202–212CrossRefGoogle Scholar
  80. 80.
    Vilo C, Galetovic A, Araya J E, Gómez-Silva B, Dong Q. Draft genome sequence of a Bacillus bacterium from the Atacama Desert wetlands metagenome. Genome Announcements, 2015, 3(4): 1–2CrossRefGoogle Scholar
  81. 81.
    Qin J, Rosen B P, Zhang Y, Wang G, Franke S, Rensing C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7): 2075–2080CrossRefGoogle Scholar
  82. 82.
    Wang P P, Sun G X, Zhu Y G. Identification and characterization of arsenite methyltransferase from an archaeon, Methanosarcina acetivorans C2A. Environmental Science & Technology, 2014, 48(21): 12706–12713CrossRefGoogle Scholar
  83. 83.
    Yin X X, Chen J, Qin J, Sun G X, Rosen B P, Zhu Y G. Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiology, 2011, 156(3): 1631–1638CrossRefGoogle Scholar
  84. 84.
    Zhang S Y, Sun G X, Yin X X, Rensing C, Zhu Y G. Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere, 2013, 93(1): 47–53CrossRefGoogle Scholar
  85. 85.
    Williams P N, Santner J, Larsen M, Lehto N J, Oburger E, Wenzel W, Glud R N, Davison W, Zhang H. Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice. Environmental Science & Technology, 2014, 48(15): 8498–8506CrossRefGoogle Scholar
  86. 86.
    Guan D X, Williams P N, Luo J, Zheng J L, Xu H C, Cai C, Ma L Q. Novel precipitated zirconia-based DGT technique for high-resolution imaging of oxyanions in waters and sediments. Environmental Science & Technology, 2015, 49(6): 3653–3661CrossRefGoogle Scholar
  87. 87.
    Oburger E, Schmidt H. New methods to unravel rhizosphere processes. Trends in Plant Science, 2016, 21(3): 243–255CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Si-Yu Zhang
    • 1
    • 2
  • Paul N. Williams
    • 3
  • Jinming Luo
    • 4
  • Yong-Guan Zhu
    • 1
    • 5
    Email author
  1. 1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentBeijing Normal UniversityBeijingChina
  3. 3.Institute for Global Food Security, School of Biological SciencesQueen’s University BelfastBelfastUK
  4. 4.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  5. 5.Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina

Personalised recommendations