Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems

  • Haifa Rajhi
  • Daniel Puyol
  • Mirna C. Martínez
  • Emiliano E. Díaz
  • José L. Sanz
Research Article


The successful operation of any type of hydrogen-producing bioreactor depends on the performance of the microorganisms present in the system. Both substrate and partial gas pressures are crucial factors affecting dark fermentation metabolic pathways. The main objective of this study was to evaluate the impact of both factors on hydrogen production using anaerobic granular sludge as inoculum and, secondly, to study the metabolic shifts of an anaerobic community subjected to low partial gas pressures. With this goal in mind, seven different wastewater (four synthetic media, two industrial wastewater, and one domestic effluent) and the effect of applying vacuum on the systems were analyzed. The application of vacuum promoted an increase in the diversity of hydrogenproducing bacteria, such as Clostridium, and promoted the dominance of acetoclastic- over hydrogenotrophic methanogens. The application of different media promoted a wide variety of metabolic pathways. Nevertheless, reduction of the hydrogen partial pressure by application of vacuum lead to further oxidation of reaction intermediates irrespective of the medium used, which resulted in higher hydrogen and methane production, and improved the COD removal. Interestingly, vacuum greatly promoted biogenic hydrogen production from a real wastewater, which opens possibilities for future application of dark fermentation systems to enhance biohydrogen yields.


dark fermentation biohydrogen wastewaters vacuum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stronach S M, Rudd T, Lester J N. Anaerobic Digestion Processes in Industrial Wastewater Treatment. Biotechnology Monographs. Berlin: Germany Springer-Verlag, 1986Google Scholar
  2. 2.
    Hu B, Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 2007, 32(15): 3266–3273CrossRefGoogle Scholar
  3. 3.
    Mizuno O, Dinsdale R, Hawkes F R, Hawkes D L, Noile T. Enhancement of hydrogen production by nitrogen gas sparging. Bioresource Technology, 2000, 73(1): 59–65CrossRefGoogle Scholar
  4. 4.
    Karlsson A, Vallin L, Ejelertsson J. Effects of temperature hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation food industry residues and manure. International Journal of Hydrogen Energy, 2008, 33(3): 953–962CrossRefGoogle Scholar
  5. 5.
    Liang T M, Cheng S S, Wu K L. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. International Journal of Hydrogen Energy, 2002, 27(11–12): 1157–1165CrossRefGoogle Scholar
  6. 6.
    Clark I C, Zhang R H, Upadhyaya S K. The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation. International Journal of Hydrogen Energy, 2012, 37 (15): 11504–11513CrossRefGoogle Scholar
  7. 7.
    Lee K S, Tseng T S, Liu Y W, Hsiao Y D. Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. International Journal of Hydrogen Energy, 2012, 37(20): 15556–15562CrossRefGoogle Scholar
  8. 8.
    Show K Y, Lee D J, Chang J S. Bioreactor and process design for biohydrogen production. Bioresource Technology, 2011, 102(18): 8524–8533CrossRefGoogle Scholar
  9. 9.
    Tang G L, Huang J, Sun Z J, Tang Q Q, Yan C H, Liu G Q. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. Journal of Bioscience and Bioengineering, 2008, 106(1): 80–87CrossRefGoogle Scholar
  10. 10.
    Fang H H P, Liu H, Zhang T. Characterization of a hydrogenproducing granular sludge. Biotechnology and Bioengineering, 2002, 78(1): 44–52CrossRefGoogle Scholar
  11. 11.
    Lee K S, Wu J F, Lo Y S, Lo Y C, Lin P J, Chang J S. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnology and Bioengineering, 2004, 87 (5): 648–657CrossRefGoogle Scholar
  12. 12.
    Hawkes F R, Hussy I, Kyazze G, Dinsdale R, Hawkes D L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. International Journal of Hydrogen Energy, 2007, 32(2): 172–184CrossRefGoogle Scholar
  13. 13.
    Niu K, Zhang X, Tan W S, Zhu M L. Characterization of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 2010, 35(1): 71–80CrossRefGoogle Scholar
  14. 14.
    Garcia Mancha N, Puyol D, Monsalvo V M, Rajhi H, Mohedano A F, Rodriguez J J. Anaerobic treatment of wastewater from used industrial oil recovery. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2012, 87(9): 1320–1328CrossRefGoogle Scholar
  15. 15.
    Sanz J L, Rodríguez N, Amils R. The action of antibiotics on the anaerobic digestion process. Applied Microbiology and Biotechnology, 1996, 46(5–6): 587–592CrossRefGoogle Scholar
  16. 16.
    Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association/American Water Works Association/Water Environment Federation, 1998Google Scholar
  17. 17.
    Fang H H P, Zhang T, Liu H. Microbial diversity of a mesophilic hydrogen-producing sludge. Applied Microbiology and Biotechnology, 2002, 58(1): 112–118CrossRefGoogle Scholar
  18. 18.
    Lo Y C, Chen W M, Hung C H, Chen S D, Chang J S. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Water Research, 2008, 42(4–5): 827–842CrossRefGoogle Scholar
  19. 19.
    Kanso S, Dasri K, Tingthong S, Watanapokasin R Y. Diversity of cultivable hydrogen-producing bacteria isolated from agricultural soils, waste water sludge and cow dung. International Journal of Hydrogen Energy, 2011, 36(14): 8735–8742CrossRefGoogle Scholar
  20. 20.
    Toh H, Sharma V K, Oshima K, Kondo S, Hattori M, Ward F B, Free A, Taylor T D. Complete genome sequences of Arcobacter butzleri ED-1 and Arcobacter sp. strain L, both isolated from a microbial fuel cell. Journal of Bacteriology, 2011, 193(22): 6411–6412Google Scholar
  21. 21.
    Liu W T, Chan O C, Fang H H P. Characterization of microbial community in granular sludge treating brewery wastewater. Water Research, 2002, 36(7): 1767–1775CrossRefGoogle Scholar
  22. 22.
    Liu F, Fang B. Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae. Biotechnology Journal, 2007, 2(3): 374–380CrossRefGoogle Scholar
  23. 23.
    Sun W, Sierra-Alvarez R, Milner L, Field J A. Anaerobic oxidation of arsenite linked to chlorate reduction. Applied and Environmental Microbiology, 2010, 76(20): 6804–6811CrossRefGoogle Scholar
  24. 24.
    Diaz E E, Stams F, Amils R, Sanz J L. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale UASB reactor treating brewery wastewaters. Applied and Environmental Microbiology, 2006, 72(7): 4942–4949CrossRefGoogle Scholar
  25. 25.
    Jun Y S, Yu S H, Ryu K G, Lee T J. Kinetic study of pH effects on biological hydrogen production by a mixed culture. Journal of Microbiology and Biotechnology, 2008, 18(6): 1130–1135Google Scholar
  26. 26.
    Nicolau J M, Guwy A, Dinsdale R, Premier G, Esteves S. Production of hydrogen from sewage biosolids in a continuously fed bioreactor: Effect of hydraulic retention time and sparging. International Journal of Hydrogen Energy, 2010, 35(2): 469–478CrossRefGoogle Scholar
  27. 27.
    Mead G C. The amino acid-fermenting clostridia. Journal of General Microbiology, 1971, 67(1): 47–56CrossRefGoogle Scholar
  28. 28.
    Staples C A, Williams J B, Craig G R, Roberts K M. Fate, effects and potential environmental risks of ethylene glycol: a review. Chemosphere, 2001, 43(3): 377–383CrossRefGoogle Scholar
  29. 29.
    Antonopoulou G, Gaval N, Skiadas I V, Lyberatos G. Influence of pH fermentative hydrogen production from sweet sorghum extract. International Journal of Hydrogen Energy, 2010, 35(5): 1921–1928CrossRefGoogle Scholar
  30. 30.
    Lay J J, Fan K S, Chang J L, Ku C H. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock sludge. International Journal of Hydrogen Energy, 2003, 28(12): 1361–1367CrossRefGoogle Scholar
  31. 31.
    Hussy I, Hawkes F R, Dinsdale R, Hawkes D L. Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnology and Bioengineering, 2003, 84 (6): 619–626CrossRefGoogle Scholar
  32. 32.
    Kalia V C, Purohit H J. Microbial diversity and genomics in aid of bioenergy. Journal of Industrial Microbiology & Biotechnology, 2008, 35(5): 403–419CrossRefGoogle Scholar
  33. 33.
    Speece R E. Anaerobic Biotechnology (for Industrial wastewater). Nashville, Tennessee: Archae Press, 1996Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Haifa Rajhi
    • 1
  • Daniel Puyol
    • 2
  • Mirna C. Martínez
    • 3
  • Emiliano E. Díaz
    • 3
  • José L. Sanz
    • 1
  1. 1.Department of Molecular BiologyUniversity Autonoma of MadridMadridSpain
  2. 2.Section of Chemical EngineeringUniversity Autonoma of MadridMadridSpain
  3. 3.MYGEN LaboratoryCantoblancoMadridSpain

Personalised recommendations