A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles

  • Ana Picado
  • Susana M. Paixão
  • Liliana Moita
  • Luis Silva
  • Mário S. Diniz
  • Joana Lourenço
  • Isabel Peres
  • Luisa Castro
  • José Brito Correia
  • Joana Pereira
  • Isabel Ferreira
  • António Pedro Alves Matos
  • Pedro Barquinha
  • Elsa Mendonca
Research Article

Abstract

The new properties of engineered nanoparticles drive the need for new knowledge on the safety, fate, behavior and biologic effects of these particles on organisms and ecosystems. Titanium dioxide nanoparticles have been used extensively for a wide range of applications, e.g, self-cleaning surface coatings, solar cells, water treatment agents, topical sunscreens. Within this scenario increased environmental exposure can be expected but data on the ecotoxicological evaluation of nanoparticles are still scarce. The main purpose of this work was the evaluation of effects of TiO2 nanoparticles in several organisms, covering different trophic levels, using a battery of aquatic assays. Using fish as a vertebrate model organism tissue histological and ultrastructural observations and the stress enzyme activity were also studied. TiO2 nanoparticles (Aeroxide® P25), two phase composition of anatase (65%) and rutile (35%) with an average particle size value of 27.6±11 nm were used. Results on the EC50 for the tested aquatic organisms showed toxicity for the bacteria, the algae and the crustacean, being the algae the most sensitive tested organism. The aquatic plant Lemna minor showed no effect on growth. The fish Carassius auratus showed no effect on a 21 day survival test, though at a biochemical level the cytosolic Glutathione-S-Transferase total activity, in intestines, showed a general significant decrease (p<0.05) after 14 days of exposure for all tested concentrations. The presence of TiO2 nanoparticles aggregates were observed in the intestine lumen but their internalization by intestine cells could not be confirmed.

Keywords

ecotoxicity enzymatic analysis histology transmission electron microscopy (TEM) TiO2-nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmid G. Nanoparticles: From Theory to Application. Weinheim, Germany: Wiley-VCH, 2010CrossRefGoogle Scholar
  2. 2.
    Kalantzi O I, Biskos G. Methods for assessing basic particle properties and cytotoxicity of engineered nanoparticles. Toxics, 2014, 2(1): 79–91CrossRefGoogle Scholar
  3. 3.
    Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959CrossRefGoogle Scholar
  4. 4.
    Dalai S, Pakrashi S, Chandrasekaran N, Mukherjee A. Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system. PLoS ONE, 2013, 8(4): e62970CrossRefGoogle Scholar
  5. 5.
    Liu X, Chen G, Su C. Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase. Journal of Colloid and Interface Science, 2011, 363(1): 84–91CrossRefGoogle Scholar
  6. 6.
    Moore M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 2006, 32(8): 967–976CrossRefGoogle Scholar
  7. 7.
    Kahru A, Dubourguier H C. From ecotoxicology to nanoecotoxicology. Toxicology, 2010, 269(2–3): 105–119CrossRefGoogle Scholar
  8. 8.
    Warheit D B, Hoke R A, Finlay C, Donner E M, Reed K L, Sayes C M. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters, 2007, 171(3): 99–110CrossRefGoogle Scholar
  9. 9.
    Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, Landsiedel R. Acute and chronic effects of nano- and non-nanoscale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere, 2009, 76(10): 1356–1365CrossRefGoogle Scholar
  10. 10.
    Zhu X, Zhu L, Chen Y, Tian S. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. Journal of Nanoparticle Research, 2009, 11(1): 67–75CrossRefGoogle Scholar
  11. 11.
    Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 2010, 78(3): 209–215CrossRefGoogle Scholar
  12. 12.
    Heinlaan M, Ivask A, Blinova I, Dubourguier H C, Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71(7): 1308–1316CrossRefGoogle Scholar
  13. 13.
    Blaise C, Gagné F, Férard J F, Eullaffroy P. Ecotoxicity of selected nano-materials to aquatic organisms. Environmental Toxicology, 2008, 23(5): 591–598CrossRefGoogle Scholar
  14. 14.
    Aruoja V, Dubourguier H C, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 2009, 407(4): 1461–1468CrossRefGoogle Scholar
  15. 15.
    Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research International, 2006, 13(4): 225–232CrossRefGoogle Scholar
  16. 16.
    Hall S, Bradley T, Moore J T, Kuykindall T, Minella L. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology, 2009, 3(2): 91–97CrossRefGoogle Scholar
  17. 17.
    Reeves J F, Davies S J, Dodd N J F, Jha A N. Hydroxyl radicals(OH) are associated with titanium dioxide(TiO2) nanoparticleinduced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research, 2008, 640(1–2): 113–122CrossRefGoogle Scholar
  18. 18.
    Dodd N J F, Jha A N. Titanium dioxide induced cell damage: a proposed role of the carboxyl radical. Mutation Research, 2009, 660(1–2): 79–82CrossRefGoogle Scholar
  19. 19.
    Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene(C60) nanoparticles. Environmental Toxicology and Chemistry, 2006, 25(4): 1132–1137CrossRefGoogle Scholar
  20. 20.
    Clemente Z, Castro V L, Jonsson C M, Fraceto L F. Ecotoxicology of nano-TiO2—An evaluation of its toxicity to organisms of aquatic ecosystems. International Journal of Environmental of Research, 2012, 6(1): 33–50Google Scholar
  21. 21.
    Paixão S M, Silva L, Fernandes A, O’Rourke K, Mendonça E, Picado A. Performance of a miniaturized algal bioassay in phytotoxicity screening. Ecotoxicology, 2008, 17(3): 165–171CrossRefGoogle Scholar
  22. 22.
    Martoja R, Martoja-Pierson M. Initiation aux techniques de l'histologie animale. R. Martoja et M. Martoja-Pierson, Masson, 1967, ParisGoogle Scholar
  23. 23.
    Habig W H, Pabst M J, Jakoby W B. Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 1974, 249(22): 7130–7139Google Scholar
  24. 24.
    Banan Khojasteh S M, Sheikhzadeh F, Mohammadnejad D, Azami A. Histological, histochemical and ultrastructural study of the intestine of rainbow trout (Oncorhynchus mykiss). World Applied Sciences Journal, 2009, 6(11): 1525–1531Google Scholar
  25. 25.
    Delashoub M, Pousty I, Banan Khojasteh S M. Histology of bighead carp (Hypophthalmichthys nobilis) intestine. Global Veterinaria, 2010, 5(6): 302–306Google Scholar
  26. 26.
    Clément L, Hurel C, Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- effects of size and crystalline structure. Chemosphere, 2013, 90(3): 1083–1090CrossRefGoogle Scholar
  27. 27.
    Sharma V K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment — A review. Journal of Environmental Science and Health, Part A, 2009, 44(14): 1485–1495CrossRefGoogle Scholar
  28. 28.
    Menard A, Drobne D, Jemec A. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environmental Pollution, 2011, 159(3): 677–684CrossRefGoogle Scholar
  29. 29.
    Kim E, Kim S H, Kim H C, Lee S G, Lee S J, Jeong S W. Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicology and Environmental Health Science, 2011, 3(1): 1–6CrossRefGoogle Scholar
  30. 30.
    Slatinská I, Smutná M, Havelková M, Svobodová Z. Review article: biochemical markers of aquatic pollution in fish— Glutathione STransferase. Folia Veterinaria, 2008, 52(3–4): 129–134Google Scholar
  31. 31.
    Yi X, Ding H, Lu Y, Liu H, Zhang M, Jiang W. Effects of long-term alachlor exposure on hepatic antioxidant defense and detoxifying enzyme activities in crucian carp (Carassius auratus). Chemosphere, 2007, 68(8): 1576–1581CrossRefGoogle Scholar
  32. 32.
    Xiong D, Fang T, Yu L, Sima X, Zhu W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 2011, 409(8): 1444–1452CrossRefGoogle Scholar
  33. 33.
    Zhang X, Sun H, Zhang Z, Niu Q, Chen Y, Crittenden J C. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere, 2007, 67(1): 160–166CrossRefGoogle Scholar
  34. 34.
    Federici G, Shaw B J, Handy R D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 2007, 84(4): 415–430CrossRefGoogle Scholar
  35. 35.
    Handy R D, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 2008, 17(5): 315–325CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ana Picado
    • 1
  • Susana M. Paixão
    • 1
  • Liliana Moita
    • 1
  • Luis Silva
    • 1
  • Mário S. Diniz
    • 2
    • 3
  • Joana Lourenço
    • 2
  • Isabel Peres
    • 3
  • Luisa Castro
    • 3
  • José Brito Correia
    • 1
  • Joana Pereira
    • 4
  • Isabel Ferreira
    • 4
  • António Pedro Alves Matos
    • 5
    • 6
  • Pedro Barquinha
    • 4
  • Elsa Mendonca
    • 1
  1. 1.LNEG-National Laboratory of Energy and GeologyI.P.LisbonPortugal
  2. 2.REQUIMTE, Chemistry Department, Fine Chemistry and Biotechnology Center, Faculty of Sciences and TechnologyNew University of LisbonCaparicaPortugal
  3. 3.IMAR-Ocean Institute, Department of Sciences and Environmental Engineering, Faculty of Sciences and TechnologyNew University of LisbonCaparicaPortugal
  4. 4.CENIMAT/I3N and Department of Materials Science, Faculty of Sciences and TechnologyNew University of LisbonCaparicaPortugal
  5. 5.Pathological AnatomyCurry Cabral HospitalLisbonPortugal
  6. 6.CESAM, Faculty of SciencesLisbon UniversityLisbonPortugal

Personalised recommendations