Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement

  • Juntao Huo
  • Xiaohui Lu
  • Xinning Wang
  • Hong Chen
  • Xingnan Ye
  • Song Gao
  • Deborah S. Gross
  • Jianmin Chen
  • Xin Yang
Research Article

Abstract

Fresh straw burning (SB) particles were generated in the laboratory by the combustion of rice straw and corn straw. The chemical composition and mixing state of the fresh SB particles were investigated by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Based on the mass spectral patterns, the SB particles were clustered into four major types: Salt, Organic Carbon (OC), Elemental Carbon (EC), and internally mixed particles of EC and OC (EC-OC). In addition, particles containing ash, polycyclic aromatic hydrocarbons, heavy metals or nicotine were also observed. Physical and chemical changes of the SB particles immediately after the emission were analyzed with highly time-resolved data. During the aging processes, the average particle size increased steadily. Freshly emitted organic compounds were gradually oxidized to more oxygenated compounds in the OC-containing particles. Meanwhile, an important displacement reaction (2KCl + SO 4 2− → K2SO4 + 2Cl) was observed. The marker ions for SB particles were optimized and applied to identify the SB particles in the ambient atmosphere. The fluctuation of the number fraction of ambient SB particles sorted by ATOFMS agrees well with that of water soluble K+ measured by an online ion chromatography, demonstrating that the optimized marker ions could be good tracers for SB particles in field measurements.

Keywords

crop straw burning particles mixing state aging process ATOFMS ion markers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11783_2015_768_MOESM1_ESM.pdf (316 kb)
Supplementary material, approximately 312 KB.

References

  1. 1.
    Crutzen P J, Andreae M O. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 1990, 250(4988): 1669–1678CrossRefGoogle Scholar
  2. 2.
    Hobbs P V, Reid J S, Kotchenruther R A, Ferek R J, Weiss R. Direct radiative forcing by smoke from biomass burning. Science, 1997, 275(5307): 1776–1778CrossRefGoogle Scholar
  3. 3.
    Watson J G. Visibility: science and regulation. Journal of the Air & Waste Management Association, 2002, 52(6): 628–713CrossRefGoogle Scholar
  4. 4.
    Streets D G, Yarber K F, Woo J H, Carmichael G R. Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 2003, 17(4): 1099CrossRefGoogle Scholar
  5. 5.
    Gadde B, Bonnet S, Menke C, Garivait S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 2009, 157(5): 1554–1558CrossRefGoogle Scholar
  6. 6.
    Ryu S Y, Kim J E, Zhuanshi H, Kim Y J, Kang G U. Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea. Journal of the Air & Waste Management Association, 2004, 54(9): 1124–1137 doi:10.1080/10473289.2004.10471018CrossRefGoogle Scholar
  7. 7.
    Zhang H F, Ye X N, Cheng T T, Chen J M, Yang X, Wang L, Zhang R Y. A laboratory study of agricultural crop residue combustion in China: emission factors and emission inventory. Atmospheric Environment, 2008, 42(36): 8432–8441CrossRefGoogle Scholar
  8. 8.
    Cao G L, Zhang X Y, Wang Y Q, Zheng F C. Estimation of emissions from field burning of crop straw in China. Chinese Science Bulletin, 2008, 53(5): 784–790CrossRefGoogle Scholar
  9. 9.
    Qin Y, Xie S D. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990–2005. Environmental Pollution, 2011, 159(12): 3316–3323CrossRefGoogle Scholar
  10. 10.
    Li X, Wang S, Duan L, Hao J, Li C, Chen Y, Yang L. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environmental Science & Technology, 2007, 41(17): 6052–6058CrossRefGoogle Scholar
  11. 11.
    Reid J S, Koppmann R, Eck T F, Eleuterio D P. A review of biomass burning emissions, Part II: Intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics, 2005, 5(3): 799–825CrossRefGoogle Scholar
  12. 12.
    Healy R M, Hellebust S, Kourtchev I, Allanic A, O’Connor I P, Bell J M, Healy D A, Sodeau J R, Wenger J C. Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements. Atmospheric Chemistry and Physics, 2010, 10(19): 9593–9613CrossRefGoogle Scholar
  13. 13.
    Zauscher MD, Wang Y, Moore MJK, Gaston C J, Prather K A. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires. Environmental Science & Technology, 2013, 47(14): 7633–7643CrossRefGoogle Scholar
  14. 14.
    Pratt K A, Murphy S M, Subramanian R, DeMott P J, Kok G L, Campos T, Rogers D C, Prenni A J, Heymsfield A J, Seinfeld J H, Prather K A. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmospheric Chemistry and Physics, 2011, 11(24): 12549–12565CrossRefGoogle Scholar
  15. 15.
    Prather K A, Nordmeyer T, Salt K. Real-time characterization of individual aerosol-particles using time-of-flight mass-spectrometry. Analytical Chemistry, 1994, 66(9): 1403–1407CrossRefGoogle Scholar
  16. 16.
    Yang F, Chen H, Wang X N, Yang X, Du J F, Chen J M. Single particle mass spectrometry of oxalic acid in ambient aerosols in Shanghai: mixing state and formation mechanism. Atmospheric Environment, 2009, 43(25): 3876–3882CrossRefGoogle Scholar
  17. 17.
    Wang X, Williams B J, Wang X, Tang Y, Huang Y, Kong L, Yang X, Biswas P. Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace. Atmospheric Chemistry and Physics, 2013, 13(21): 10919–10932CrossRefGoogle Scholar
  18. 18.
    Bi X H, Zhang G H, Li L, Wang X M, Li M, Sheng G Y, Fu J M, Zhou Z. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. Atmospheric Environment, 2011, 45(20): 3447–3453CrossRefGoogle Scholar
  19. 19.
    Silva P J, Liu D Y, Noble C A, Prather K A. Size and chemical characterization of individual particles resulting from biomass burning of local Southern California species. Environmental Science & Technology, 1999, 33(18): 3068–3076CrossRefGoogle Scholar
  20. 20.
    Pagels J, Dutcher D D, Stolzenburg M R, McMurry P H, Gälli M E, Gross D S. Fine-particle emissions from solid biofuel combustion studied with single-particle mass spectrometry: Identification of markers for organics, soot, and ash components. Journal of Geophysical Research, D, Atmospheres, 2013, 118(2): 859–870CrossRefGoogle Scholar
  21. 21.
    Song X H, Hopke P K, Fergenson D P, Prather K A. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Analytical Chemistry, 1999, 71(4): 860–865CrossRefGoogle Scholar
  22. 22.
    Gao S, Hegg D A, Hobbs P V, Kirchstetter T W, Magi B I, Sadilek M. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D13): 8491CrossRefGoogle Scholar
  23. 23.
    McMeeking G R, Kreidenweis S M, Baker S, Carrico C M, Chow J C, Collett J L, Hao WM, Holden A S, Kirchstetter TW, Malm WC, Moosmuller H, Sullivan A P, Wold C E. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research, D, Atmospheres, 2009, 114: D19210CrossRefGoogle Scholar
  24. 24.
    Hudson P K, Murphy DM, Cziczo D J, Thomson D S, de Gouw J A, Warneke C, Holloway J, Jost J R, Hubler G. Biomass-burning particle measurements: characteristic composition and chemical processing. Journal of Geophysical Research, D, Atmospheres, 2004, 109(D23): D23S27CrossRefGoogle Scholar
  25. 25.
    Pósfai M, Simonics R, Li J, Hobbs P V, Buseck P R. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D13): 8483CrossRefGoogle Scholar
  26. 26.
    Kulmala M, Dal Maso M, Mäkelä J M, Pirjola L, Väkevä M, Aalto P, Miikkulainen P, Hämeri K, O’Dowd C D. On the formation, growth and composition of nucleation mode particles. Tellus. Series B, Chemical and Physical Meteorology, 2001, 53(4): 479–490CrossRefGoogle Scholar
  27. 27.
    Hennigan C J, Sullivan A P, Collett J L Jr, Robinson A L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research Letters, 2010, 37(9): L09806CrossRefGoogle Scholar
  28. 28.
    Kessler S H, Smith J D, Che D L, Worsnop D R, Wilson K R, Kroll J H. Chemical sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan. Environmental Science & Technology, 2010, 44(18): 7005–7010CrossRefGoogle Scholar
  29. 29.
    Li J, Pósfai M, Hobbs P V, Buseck P R. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D13): 8484CrossRefGoogle Scholar
  30. 30.
    Reid J S, Hobbs P V. Physical and optical properties of young smoke from individual biomass fires in Brazil. Journal of Geophysical Research, D, Atmospheres, 1998, 103(D24): 32013–32030CrossRefGoogle Scholar
  31. 31.
    Kreidenweis S M, Remer L A, Bruintjes R, Dubovik O. Smoke aerosol from biomass burning in Mexico: hygroscopic smoke optical model. Journal of Geophysical Research, D, Atmospheres, 2001, 106(D5): 4831–4844CrossRefGoogle Scholar
  32. 32.
    Yokelson R J, Crounse J D, DeCarlo P F, Karl T, Urbanski S, Atlas E, Campos T, Shinozuka Y, Kapustin V, Clarke A D, Weinheimer A, Knapp D J, Montzka D D, Holloway J, Weibring P, Flocke F, Zheng W, Toohey D, Wennberg P O, Wiedinmyer C, Mauldin L, Fried A, Richter D, Walega J, Jimenez J L, Adachi K, Buseck P R, Hall S R, Shetter R. Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9(15): 5785–5812CrossRefGoogle Scholar
  33. 33.
    Pekney N J, Davidson C I, Bein K J, Wexler A S, Johnston M V. Identification of sources of atmospheric PM at the Pittsburgh Supersite, Part I: Single particle analysis and filter-based positive matrix factorization. Atmospheric Environment, 2006, 40(Suppl. 2): 411–423CrossRefGoogle Scholar
  34. 34.
    Bein K J, Zhao Y, Johnston M V, Wexler A S. Identification of sources of atmospheric PM at the Pittsburgh Supersite—Part III: Source characterization. Atmospheric Environment, 2007, 41(19): 3974–3992CrossRefGoogle Scholar
  35. 35.
    Du H, Kong L, Cheng T, Chen J, Du J, Li L, Xia X, Leng C, Huang G. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmospheric Environment, 2011, 45(29): 5131–5137CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Juntao Huo
    • 1
  • Xiaohui Lu
    • 1
  • Xinning Wang
    • 1
  • Hong Chen
    • 1
  • Xingnan Ye
    • 1
  • Song Gao
    • 2
  • Deborah S. Gross
    • 3
  • Jianmin Chen
    • 1
    • 4
  • Xin Yang
    • 1
    • 4
  1. 1.Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and EngineeringFudan UniversityShanghaiChina
  2. 2.Division of Math, Science and TechnologyNova Southeastern UniversityFort LauderdaleUSA
  3. 3.Department of ChemistryCarleton CollegeNorthfieldUSA
  4. 4.Fudan-Tyndall CenterFudan UniversityShanghaiChina

Personalised recommendations