Applications of nanomaterials in water treatment and environmental remediation

  • Gholamreza Ghasemzadeh
  • Mahdiye Momenpour
  • Fakhriye Omidi
  • Mohammad R. Hosseini
  • Monireh Ahani
  • Abolfazl Barzegari
Review Article

Abstract

Nanotechnology has revolutionized plethora of scientific and technological fields; environmental safety is no exception. One of the most promising and well-developed environmental applications of nanotechnology has been in water remediation and treatment where different nanomaterials can help purify water through different mechanisms including adsorption of heavy metals and other pollutants, removal and inactivation of pathogens and transformation of toxic materials into less toxic compounds. For this purpose, nanomaterials have been produced in different shapes, integrated into various composites and functionalized with active components. Nanomaterials have also been incorporated in nanostructured catalytic membranes which can in turn help enhance water treatment. In this article, we have provided a succinct review of the most common and popular nanomaterials (titania, carbon nanotubes (CNTs), zero-valent iron, dendrimers and silver nanomaterials) which are currently used in environmental remediation and particularly in water purification. The catalytic properties and functionalities of the mentioned materials have also been discussed.

Keywords

photocatalysis titania silver carbon nanotube zero-valent iron dendrimer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shan G, Surampalli R Y, Tyagi R D, Zhang T C. Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review. Frontiers of Environmental Science & Engineering in China, 2009, 3(3):249–264CrossRefGoogle Scholar
  2. 2.
    Mangun C L, Yue Z, Economy J, Maloney S, Kemme P, Cropek D. Adsorption of organic contaminants from water using tailored ACFs. Chemistry of Materials, 2001, 13(7):2356–2360CrossRefGoogle Scholar
  3. 3.
    Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 2009, 27(1):76–83CrossRefGoogle Scholar
  4. 4.
    Lowry G V, Johnson K M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 2004, 38(19):5208–5216CrossRefGoogle Scholar
  5. 5.
    Stone V, Nowack B, Baun A, van den Brink N, Kammer Fv, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes T F. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. The Science of the Total Environment, 2010, 408(7):1745–1754CrossRefGoogle Scholar
  6. 6.
    Hu J S, Zhong L S, Song W G, Wan L J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Advanced Materials, 2008, 20(15):2977–2982CrossRefGoogle Scholar
  7. 7.
    Cai W, Yu J, Cheng B, Su B L, Jaroniec M. Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment. Journal of Physical Chemistry C, 2009, 113(33):14739–14746CrossRefGoogle Scholar
  8. 8.
    Zhang Y X, Jia Y, Jin Z, Yu X Y, Xu WH, Luo T, Zhu B J, Liu J H, Huang X J. Self-assembled, monodispersed, flower-like γ-AlOOH hierarchical superstructures for efficient and fast removal of heavy metal ions from water. CrystEngComm, 2012, 14(9):3005–3007CrossRefGoogle Scholar
  9. 9.
    Carp O, Huisman C, Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1–2):33–177CrossRefGoogle Scholar
  10. 10.
    Paramasivam I, Jha H, Liu N, Schmuki P. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small, 2012, 8(20):3073–3103CrossRefGoogle Scholar
  11. 11.
    Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 13(3):169–189CrossRefGoogle Scholar
  12. 12.
    Zhanqi G, Shaogui Y, Na T, Cheng S. Microwave assisted rapid and complete degradation of atrazine using TiO(2) nanotube photocatalyst suspensions. Journal of Hazardous Materials, 2007, 145(3):424–430CrossRefGoogle Scholar
  13. 13.
    Yu B, Zeng J, Gong L, Zhang M, Zhang L, Chen X. Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta, 2007, 72(5):1667–1674CrossRefGoogle Scholar
  14. 14.
    Ge M, Guo C, Zhu X, Ma L, Han Z, Hu W, Wang Y. Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Frontiers of Environmental Science & Engineering in China, 2009, 3(3):271–280CrossRefGoogle Scholar
  15. 15.
    Malato S, Fernández-Ibáñez P, Maldonado M, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009, 147(1):1–59CrossRefGoogle Scholar
  16. 16.
    Liou J W, Chang H H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Archivum Immunologiae et Therapiae Experimentalis, 2012, 60(4):267–275CrossRefGoogle Scholar
  17. 17.
    Brezová V, Gabcová S, Dvoranová D, Staško A. Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study). Journal of Photochemistry and Photobiology. B, Biology, 2005, 79(2):121–134Google Scholar
  18. 18.
    Wei C, Lin WY, Zainal Z, Williams N E, Zhu K, Kruzic A P, Smith R L, Rajeshwar K. Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environmental Science & Technology, 1994, 28(5):934–938CrossRefGoogle Scholar
  19. 19.
    Suwanchawalit C, Wongnawa S. Triblock copolymer-templated synthesis of porous TiO2 and its photocatalytic activity. Journal of Nanoparticle Research, 2010, 12(8):2895–2906CrossRefGoogle Scholar
  20. 20.
    Engates K E, Shipley H J. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research International, 2011, 18(3):386–395CrossRefGoogle Scholar
  21. 21.
    Leung P S. Removal and recovery of heavy metals by amorphous TiO2 nanoparticles and Ca-alginate immobilized TiO2 beads. Dissertation for the Master of Philosophy Degree. Department of Applied Biology and Chemical Technology, HongKong: The Hong Kong Polytechnic University, 2009Google Scholar
  22. 22.
    Liang P, Qin Y, Hu B, Peng T, Jiang Z. Nanometer-size titanium dioxide microcolumn on-line preconcentration of trace metals and their determination by inductively coupled plasma atomic emission spectrometry in water. Analytica Chimica Acta, 2001, 440(2):207–213CrossRefGoogle Scholar
  23. 23.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528):269–271CrossRefGoogle Scholar
  24. 24.
    Wang G, Wang X, Liu J, Sun X. Mesoporous Au/TiO2 nanocomposite microspheres for visible-light photocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(17):5361–5366Google Scholar
  25. 25.
    Liu Z, Xu X, Fang J, Zhu X, Chu J, Li B. Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation. Applied Surface Science, 2012, 258(8):3771–3778CrossRefGoogle Scholar
  26. 26.
    Acevedo A, Carpio E A, Rodriguez J, Manzano M A. Disinfection of natural water by solar photocatalysis using immobilized TiO2 devices: efficiency in eliminating indicator bacteria and operating life of the system. Journal of Solar Energy Engineering, 2012, 134(1):011008CrossRefGoogle Scholar
  27. 27.
    Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 2011, 49(3):741–772CrossRefGoogle Scholar
  28. 28.
    Ls P, Elhaddad F, Facio D S. Mosquera MJ. A novel TiO2-SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Applied Surface Science, 2012, 258(24):10123–10127CrossRefGoogle Scholar
  29. 29.
    Savage N, Diallo M S. Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle Research, 2005, 7(4–5):331–342CrossRefGoogle Scholar
  30. 30.
    Kroto H W, Allaf A W, Balm S P. C60 Buckminsterfullerene. Chemical Reviews, 1991, 91(6):1213–1235CrossRefGoogle Scholar
  31. 31.
    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348):56–58CrossRefGoogle Scholar
  32. 32.
    Fagan S B, Souza Filho A, Lima J, Filho J M, Ferreira O P, Mazali I O, Alves O L, Dresselhaus M S. 1,2-dichlorobenzene interacting with carbon nanotubes. Nano Letters, 2004, 4(7):1285–1288CrossRefGoogle Scholar
  33. 33.
    Lu C, Chung Y L, Chang K F. Adsorption of trihalomethanes from water with carbon nanotubes. Water Research, 2005, 39(6):1183–1189CrossRefGoogle Scholar
  34. 34.
    Long R Q, Yang R T. Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 2001, 123(9):2058–2059CrossRefGoogle Scholar
  35. 35.
    Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology, 2006, 40(6):1855–1861CrossRefGoogle Scholar
  36. 36.
    Wang X, Lu J, Xing B. Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environmental Science & Technology, 2008, 42(9):3207–3212CrossRefGoogle Scholar
  37. 37.
    Zhou Q, Xiao J, Wang W. Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. Journal of Chromatography. A, 2006, 1125(2):152–158CrossRefGoogle Scholar
  38. 38.
    Shi B, Zhuang X, Yan X, Lu J, Tang H. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes. Journal of Environmental Sciences-China, 2010, 22(8):1195–1202CrossRefGoogle Scholar
  39. 39.
    Hilding J, Grulke E A, Sinnott S B, Qian D, Andrews R, Jagtoyen M. Sorption of butane on carbon multiwall nanotubes at room temperature. Langmuir, 2001, 17(24):7540–7544CrossRefGoogle Scholar
  40. 40.
    Yu F, Ma J, Wu Y. Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl. Frontiers of Environmental Science & Engineering, 2012, 6(3):320–329Google Scholar
  41. 41.
    Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin Y B, Terui N, Nodasaka Y, Sasa K, Shimizu K, Akasaka T, Shindoh M, Shibata K, Yokoyama A, Mori M, Tanaka K, Sato Y, Tohji K, Tanaka S, Nishi N, Watari F. Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environmental Science & Technology, 2004, 38(24):6890–6896CrossRefGoogle Scholar
  42. 42.
    Li Y H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 2003, 41(14):2787–2792CrossRefGoogle Scholar
  43. 43.
    Kandah M I, Meunier J L. Removal of nickel ions from water by multi-walled carbon nanotubes. Journal of Hazardous Materials, 2007, 146(1–2):283–288CrossRefGoogle Scholar
  44. 44.
    Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Materials Letters, 2005, 59(4):399–403CrossRefGoogle Scholar
  45. 45.
    Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 2008, 42(24):9005–9013CrossRefGoogle Scholar
  46. 46.
    Bystrzejewski M, Pyrzynska K. Kinetics of copper ions sorption onto activated carbon, carbon nanotubes and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377(1–3):402–408CrossRefGoogle Scholar
  47. 47.
    Tian X, Zhou S, Zhang Z, He X, Yu M, Lin D. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb(II) from water. Environmental Science & Technology, 2010, 44(21):8144–8149CrossRefGoogle Scholar
  48. 48.
    Xu D, Tan X, Chen C, Wang X. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2008, 154(1–3):407–416CrossRefGoogle Scholar
  49. 49.
    Afzali D, Ghaseminezhad S, Taher M A. Separation and preconcentration of trace amounts of gold(III) ions using modified multiwalled carbon nanotube sorbent prior to flame atomic absorption spectrometry determination. Journal of AOAC International, 2010, 93(4):1287–1292Google Scholar
  50. 50.
    Luo G, Yao H, Xu M, Cui X, Chen W, Gupta R, Xu Z. Carbon nanotube-silver composite for mercury capture and analysis. Energy & Fuels, 2010, 24(1):419–426CrossRefGoogle Scholar
  51. 51.
    Lu C, Liu C. Removal of nickel (II) from aqueous solution by carbon nanotubes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2006, 81(12):1932–1940CrossRefGoogle Scholar
  52. 52.
    Zhang X, Pan B, Yang K, Zhang D, Hou J. Adsorption of sulfamethoxazole on different types of carbon nanotubes in comparison to other natural adsorbents. Journal of Environmental Science and Health Part A, Toxic/hazardous substances & environmental engineering, 2010, 45(12):1625–1634CrossRefGoogle Scholar
  53. 53.
    Yang K, Wu W, Jing Q, Jiang W, Xing B. Competitive adsorption of naphthalene with 2,4-dichlorophenol and 4-chloroaniline on multi-walled carbon nanotubes. Environmental Science & Technology, 2010, 44(8):3021–3027CrossRefGoogle Scholar
  54. 54.
    Yang K, Wang X, Zhu L, Xing B. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environmental Science & Technology, 2006, 40(18):5804–5810CrossRefGoogle Scholar
  55. 55.
    Tan X, Fang M, Chen C, Yu S, Wang X. Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution. Carbon, 2008, 46(13):1741–1750CrossRefGoogle Scholar
  56. 56.
    Kang S, Pinault M, Pfefferle L D, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(17):8670–8673CrossRefGoogle Scholar
  57. 57.
    Tang Y J, Ashcroft J M, Chen D, Min G, Kim C H, Murkhejee B, Larabell C, Keasling J D, Chen F F. Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Letters, 2007, 7(3):754–760CrossRefGoogle Scholar
  58. 58.
    Kang S, Mauter M S, Elimelech M. Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environmental Science & Technology, 2009, 43(7):2648–2653CrossRefGoogle Scholar
  59. 59.
    Srivastava A, Srivastava O N, Talapatra S, Vajtai R, Ajayan P M. Carbon nanotube filters. Nature Materials, 2004, 3(9):610–614CrossRefGoogle Scholar
  60. 60.
    Brady-Estévez A S, Kang S, Elimelech M. A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small, 2008, 4(4):481–484CrossRefGoogle Scholar
  61. 61.
    Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multiwall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5):1378–1383CrossRefGoogle Scholar
  62. 62.
    Zhang W. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 2003, 5(3/4):323–332CrossRefGoogle Scholar
  63. 63.
    Zhang W, Elliott D W. Applications of iron nanoparticles for groundwater remediation. Remediation Journal, 2006, 16(2):7–21CrossRefGoogle Scholar
  64. 64.
    Dror I, Baram D, Berkowitz B. Use of nanosized catalysts for transformation of chloro-organic pollutants. Environmental Science & Technology, 2005, 39(5):1283–1290CrossRefGoogle Scholar
  65. 65.
    Keum Y S, Li Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science & Technology, 2005, 39(7):2280–2286CrossRefGoogle Scholar
  66. 66.
    Kim H Y, Kim I K, Shim J H, Kim Y C, Han T H, Chung K C, Kim P I, Oh B T, Kim I S. Removal of alachlor and pretilachlor by laboratory-synthesized zerovalent iron in pesticide formulation solution. Bulletin of Environmental Contamination and Toxicology, 2006, 77(6):826–833CrossRefGoogle Scholar
  67. 67.
    Meyer D, Wood K, Bachas L, Bhattacharyya D. Degradation of chlorinated organics by membrane-immobilized nanosized metals. Environment and Progress, 2004, 23(3):232–242CrossRefGoogle Scholar
  68. 68.
    Cheng I F, Fernando Q, Korte N. Electrochemical dechlorination of 4-chlorophenol to phenol. Environmental Science & Technology, 1997, 31(4):1074–1078CrossRefGoogle Scholar
  69. 69.
    Kim J H, Tratnyek P G, Chang Y S. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environmental Science & Technology, 2008, 42(11):4106–4112CrossRefGoogle Scholar
  70. 70.
    Boyer C, Whittaker M R, Bulmus V, Liu J, Davis T P. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Materials, 2010, 2(1):23–30CrossRefGoogle Scholar
  71. 71.
    Tiraferri A, Chen K L, Sethi R, Elimelech M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 2008, 324(1–2):71-CrossRefGoogle Scholar
  72. 72.
    Cheng MD. Effects of nanophase materials (⩽20 nm) on biological responses. Journal of Environmental Science and Health. Part A, 2004, 39(10):2691–2705Google Scholar
  73. 73.
    Kreyling W G, Semmler-Behnke M, Möller W. Health implications of nanoparticles. Journal of Nanoparticle Research, 2006, 8(5):543–562CrossRefGoogle Scholar
  74. 74.
    Medina S H, El-Sayed M E. Dendrimers as carriers for delivery of chemotherapeutic agents. Chemical Reviews, 2009, 109(7):3141–3157CrossRefGoogle Scholar
  75. 75.
    Tomalia D A, Naylor A M, Goddard W A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte Chemie International Edition in English, 1990, 29(2):138–175CrossRefGoogle Scholar
  76. 76.
    Diallo M S, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard W A 3rd, Johnson J H Jr. Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir, 2004, 20(7):2640–2651CrossRefGoogle Scholar
  77. 77.
    Sun C, Qu R, Ji C, Wang C, Sun Y, Yue Z, Cheng G. Preparation and adsorption properties of crosslinked polystyrene-supported lowgeneration diethanolamine-typed dendrimer for metal ions. Talanta, 2006, 70(1):14–19CrossRefGoogle Scholar
  78. 78.
    Shahbazi A, Younesi H, Badiei A. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chemical Engineering Journal, 2011, 168(2):505–518CrossRefGoogle Scholar
  79. 79.
    Son W K, Youk J H, Lee T S, Park W H. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromolecular Rapid Communications, 2004, 25(18):1632–1637CrossRefGoogle Scholar
  80. 80.
    Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010, 12(5):1531–1551CrossRefGoogle Scholar
  81. 81.
    Stoimenov P K, Klinger R L, Marchin G L, Klabunde K J. Metal oxide nanoparticles as bactericidal agents. Langmuir, 2002, 18(17):6679–6686CrossRefGoogle Scholar
  82. 82.
    Martinson C A, Reddy K J. Adsorption of arsenic(III) and arsenic (V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 2009, 336(2):406–411CrossRefGoogle Scholar
  83. 83.
    Zhu D, Pignatello J J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environmental Science & Technology, 2005, 39(7):2033–2041CrossRefGoogle Scholar
  84. 84.
    Ion A C, Alpatova A, Ion I, Culetu A. Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Materials Science and Engineering B, 2011, 176(7):588–595CrossRefGoogle Scholar
  85. 85.
    Qi L, Xu Z. Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 251(1–3):183–190CrossRefGoogle Scholar
  86. 86.
    Hu X, Mu L, Wen J, Zhou Q. Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water. Journal of Hazardous Materials, 2012, 213–214(213–214):387–392CrossRefGoogle Scholar
  87. 87.
    Yuan G. Natural and modified nanomaterials as sorbents of environmental contaminants. Journal of Environmental Science and Health. Part A, 2004, 39(10):2661–2670Google Scholar
  88. 88.
    Mueller N C, van der Bruggen B, Keuter V, Luis P, Melin T, Pronk W, Reisewitz R, Rickerby D, Rios G M, Wennekes W, Nowack B. Nanofiltration and nanostructured membranes—should they be considered nanotechnology or not? Journal of Hazardous Materials, 2012, 211–212:275–280CrossRefGoogle Scholar
  89. 89.
    Li J H, Xu Y Y, Zhu L P, Wang J H, Du C H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. Journal of Membrane Science, 2009, 326(2):659–666CrossRefGoogle Scholar
  90. 90.
    Cortalezzi M M, Rose J, Wells G F, Bottero J Y, Barron A R, Wiesner M R. Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. Journal of Membrane Science, 2003, 227(1–2):207–217CrossRefGoogle Scholar
  91. 91.
    Kim S H, Kwak S Y, Sohn B H, Park T H. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. Journal of Membrane Science, 2003, 211(1):157–165CrossRefGoogle Scholar
  92. 92.
    DeFriend K A, Wiesner M R, Barron A R. Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. Journal of Membrane Science, 2003, 224(1–2):11–28CrossRefGoogle Scholar
  93. 93.
    Kim J, Davies S H R, Baumann M J, Tarabara V V, Masten S J. Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation ceramic ultrafiltration system treating natural waters. Journal of Membrane Science, 2008, 311(1–2):165–172CrossRefGoogle Scholar
  94. 94.
    Chae S R, Wang S, Hendren Z D, Wiesner M R, Watanabe Y, Gunsch C K. Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. Journal of Membrane Science, 2009, 329(1–2):68–74CrossRefGoogle Scholar
  95. 95.
    Verweij H, Schillo M C, Li J. Fast mass transport through carbon nanotube membranes. Small, 2007, 3(12):1996–2004CrossRefGoogle Scholar
  96. 96.
    Kim J, Van der Bruggen B. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environmental Pollution (Barking, Essex: 1987), 2010, 158(7):2335–2349CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gholamreza Ghasemzadeh
    • 1
  • Mahdiye Momenpour
    • 2
  • Fakhriye Omidi
    • 3
  • Mohammad R. Hosseini
    • 4
  • Monireh Ahani
    • 5
  • Abolfazl Barzegari
    • 6
  1. 1.Department of AgriculturePayame Noor UniversityTehranIran
  2. 2.Department of Environmental Biodiversity, Lahijan BranchIslamic Azad UniversityLahijanIran
  3. 3.Department of FisheriesAgricultural Science & Natural Resources UniversityGorganIran
  4. 4.Department of Environmental ScienceUniversity of PunePuneIndia
  5. 5.Department of AgricultureTakestan BranchTakestanIran
  6. 6.Research Center for Pharmaceutical NanotechnologyTabriz University of Medical SciencesTabrizIran

Personalised recommendations