Frontiers of Environmental Science & Engineering

, Volume 7, Issue 6, pp 795–802 | Cite as

Review on research and application of mesoporous transitional metal oxides in water treatment

  • Minghao Sui
  • Lei She
Review Article


This paper reviews the application of mesoporous transitional metal oxides in water treatment on basis of the catalysis and adsorption. Mesoporous transitional metal oxides are characterized by their intrinsic features, such as a high surface area, a highly ordered array of unidimensional pores with a very narrow pore size distribution, and highly dispersed active sites. Finally, the suggestions of further study on application are proposed.


mesoporous materials transitional metal oxides catalysis adsorption water treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lowell S, Shields J E. Powder Surface Area and Porosity. London: Chapman & Hall, 1998Google Scholar
  2. 2.
    Davis M E. Organizing for better synthesis. Nature, 1993, 364 (6436): 391–393CrossRefGoogle Scholar
  3. 3.
    Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu TW, Olson D H, Sheppard EW. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834–10843CrossRefGoogle Scholar
  4. 4.
    Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712CrossRefGoogle Scholar
  5. 5.
    Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036CrossRefGoogle Scholar
  6. 6.
    Joo S H, Ryoo R, Kruk M, Jaroniec M. Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates. The Journal of Physical Chemistry B, 2002, 106(18): 4640–4646CrossRefGoogle Scholar
  7. 7.
    Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angewandte Chemie International Edition in English, 1995, 34(18): 2014–2017CrossRefGoogle Scholar
  8. 8.
    Xia Y S, Dai H X, Jiang H Y, Zhang L, Deng J, Liu Y X. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. Journal of Hazardous Materials, 2011, 186(1): 84–91CrossRefGoogle Scholar
  9. 9.
    Gao Q X, Wang X F, Wu X C, Tao Y R, Zhu J J. Mesoporous zirconia nanobelts: Preparation, characterization and applications in catalytical methane combustion. Microporous and Mesoporous Materials, 2011, 143(2): 333–340CrossRefGoogle Scholar
  10. 10.
    Huo Q S, Margolese D I, Ciesla U, Demuth DG, Feng P Y, Gier T E, Sieger P, Firouzi A, Chmelka B F. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chemistry of Materials, 1994, 6(8): 1176–1191CrossRefGoogle Scholar
  11. 11.
    Wang P, Lo I M. Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Research, 2009, 43(15): 3727–3734CrossRefGoogle Scholar
  12. 12.
    Wu Z S, Zhang W M, Sui Z X. Surface complexation constants of mesoporous Fe2O3. Acta Chimica Sinica, 2010, 68(8): 769–774 (in Chinese)Google Scholar
  13. 13.
    Sun S P, Lemley A T. p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways. Journal of Molecular Catalysis A: Chemical, 2011, 349(1): 71–79CrossRefGoogle Scholar
  14. 14.
    Tamiolakis I, Lykakis I N, Katsoulidis A P, Malliakas C D, Armatas G S. Ordered mesoporous Cr2O3 frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. Journal of Materials Chemistry, 2012, 22(14): 6919–6927CrossRefGoogle Scholar
  15. 15.
    Jin MS, Kim JW, Kim JM, Jurng J S, Bae G N, Jeon J K, Park Y K. Effect of calcination temperature on the oxidation of benzene with ozone at low temperature over mesoporous α-Mn2O3. Powder Technology, 2011, 214(3): 458–462CrossRefGoogle Scholar
  16. 16.
    Xiao T, Yang C, Tian X K. Research on the preparation of mesoporous CeO2-ZrO2 and its adsorption of Cr6+ in water. Nanoscience & Nanotechnology, 2009, 6: 11–15 (in Chinese)Google Scholar
  17. 17.
    Hu C, Xing S T, Qu J H, He H. Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia. Journal of Physical Chemistry C, 2008, 112(15): 5978–5983CrossRefGoogle Scholar
  18. 18.
    Yu D Z, Deng Z S, Zheng M M, Cai R X. Preparation of nanozirconium dioxide and its property of adsorbing dyestuff. Environmental Science & Technology, 2004, 27: 75–76 (in Chinese)Google Scholar
  19. 19.
    Yang Y X, Ma J, Qin Q D, Zhai X D. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. Journal of Molecular Catalysis A Chemical, 2007, 267(1): 41–48CrossRefGoogle Scholar
  20. 20.
    Guo C S, Ge M, Liu L, Gao G D, Feng Y C, Wang Y Q. Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation. Environmental Science & Technology, 2010, 44(1): 419–425CrossRefGoogle Scholar
  21. 21.
    Wang G Q. Preparation of mesoporous TiO2 photocatalyst and photocatalytic degradation of organic dye. Environmental Pollution & Control, 2008, 30: 1–3 (in Chinese)Google Scholar
  22. 22.
    Iwasaki M, Hara M, Kawada H, Tada H, Ito S. Cobalt ion-doped TiO2 photocatalyst response to visible light. Journal of Colloid and Interface Science, 2000, 224(1): 202–204CrossRefGoogle Scholar
  23. 23.
    Hu Q H, Zhang W P, Liu L Q, Tao C Y, Yang Q Y. Degradation of methyl orange catalyzed by Fe3+-doped mesoporous TiO2. Industrial Catalysis, 2009, 17: 66–71 (in Chinese)Google Scholar
  24. 24.
    Xiang W C, Hu P, Zhang X, Yao M S, Xu R F, Yuan F L. Synthesis of porous TiO2 hollow spheres by hydrothermal method and their adsorption property to Cr(VI). The Chinese Journal of Process Engineering, 2011, 11: 678–683 (in Chinese)Google Scholar
  25. 25.
    Pérez León C, Kador L, Peng B, Thelakkat M. Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR Spectroscopies. The Journal of Physical Chemistry B, 2006, 110(17): 8723–8730CrossRefGoogle Scholar
  26. 26.
    Lei J H, Xiong H C, Chen Y X. Non-siliceous mesoporous materials and their applications. Journal of the Chinese Ceramic Society, 2004, 32: 1003–1007 (in Chinese)Google Scholar
  27. 27.
    Pignatello J J, Oliveros E, Mackay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1–84CrossRefGoogle Scholar
  28. 28.
    Chen J X, Zhu L Z. Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catalysis Today, 2007, 126(3–4): 463–470CrossRefGoogle Scholar
  29. 29.
    Legube B, Karpel V L N. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today, 1999, 53 (1): 61–72CrossRefGoogle Scholar
  30. 30.
    Thomas JM, Thomas WJ, Anderson J R, Boudart M. Principles and Practice of Heterogeneous Catalysis. Weinheim: VCH, 1997Google Scholar
  31. 31.
    Yu J C, Wang X C, Fu X Z. Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chemistry of Materials, 2004, 16(8): 1523–1530CrossRefGoogle Scholar
  32. 32.
    Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3): 735–758CrossRefGoogle Scholar
  33. 33.
    Wu S J, Li F T, Zhang B R. Research progress in the application of mesoporous adsorbent to the field of water treatment. Industrial Water Treatment, 2010, 30: 1–4 (in Chinese)Google Scholar
  34. 34.
    Zhou D H, Li X Y, Xu F L. Some experimental problems related to distinguishing specific adsorption from non-specific adsorption of heavy metal on the surface of oxides. Acta Pedologica Sinica, 1997, 34: 348–351 (in Chinese)Google Scholar
  35. 35.
    Lata H, Garg V K, Gupta R K. Adsorptive removal of basic dye by chemically activated Parthenium biomass: equilibrium and kinetic modeling. Desalination, 2008, 219(1–3): 250–261CrossRefGoogle Scholar
  36. 36.
    Babel S, Kurniawan T A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 2004, 54(7): 951–967CrossRefGoogle Scholar
  37. 37.
    De Castro Dantas T N, Neto A A D, De A. Moura M C P. Removal of chromium from aqueous solutions by diatomite treated with microemulsion. Water Research, 2001, 35(9): 2219–2224CrossRefGoogle Scholar
  38. 38.
    Kang M, Choung S, Park J Y. Photocatalytic performance of nanometersized FexOy/TiO2 particle synthesized by hydrothermal method. Catalysis Today, 2003, 87(1–4): 87–97CrossRefGoogle Scholar
  39. 39.
    Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583–585CrossRefGoogle Scholar
  40. 40.
    Lee K, Park S W, Ko M J, Kim K, Park N G. Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nature Materials, 2009, 8(8): 665–671CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations