Advertisement

Thermogravimetric coupled with Fourier transform infrared analysis study on thermal treatment of monopotassium phosphate residue

  • Yuheng Feng
  • Xuguang JiangEmail author
  • Yong Chi
  • Xiaodong Li
  • Hongmei Zhu
Research Article

Abstract

In China, safe disposal of hazardous waste is more and more a necessity, urged by rapid economic development. The pyrolysis and combustion characteristics of a residue from producing monopotassium phosphate (monopotassium phosphate residue), considered as a hazardous waste, were studied using a thermogravimetric, coupled with Fourier transform infrared analyzer (TG-FTIR). Both pyrolysis and combustion runs can be subdivided into three stages: drying, thermal decomposition, and final devolatilization. The average weight loss rate during fast thermal decomposition stage in pyrolysis is higher than combustion. Acetic acid, methane, pentane, (acetyl) cyclopropane, 2,4,6-trichlorophenol, CO, and CO2 were distinguished in the pyrolysis process, while CO2 was the dominant combustion product.

Keywords

hazardous waste combustion pyrolysis thermogravimetric coupled with Fourier transform infrared analysis (TG-FTIR) monopotassium phosphate residue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Orloff K, Falk H. An international perspective on hazardous waste practices. International Journal of Hygiene and Environmental Health, 2003, 206(4–5): 291–302CrossRefGoogle Scholar
  2. 2.
    Karayildirim T, Yanik J, Yuksel M, Bockhorn H. Characterisation of products from pyrolysis of waste sludges. Fuel, 2006, 85(10–11): 1498–1508CrossRefGoogle Scholar
  3. 3.
    Jiang X G, Li C Y, Chi Y, Yan J H. TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. Journal of Hazardous Materials, 2010, 173(1–3): 205–210CrossRefGoogle Scholar
  4. 4.
    Jiang X G, Li C Y, Chi Y, Yan J H. Thermal behavior characteristics of Adhesive residue. Waste Management (New York), 2009, 29(11): 2824–2829Google Scholar
  5. 5.
    Karayildirim T, Yanik J, Yuksel M, Bockhorn H. Characterisation of products from pyrolysis of waste sludge. Fuel, 2006, 85(10–11): 1498–1508CrossRefGoogle Scholar
  6. 6.
    Méndez A, Fidalgo J M, Guerrero F, Gascób G. Characterization and pyrolysis behaviour of different paper mill waste materials. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 66–73CrossRefGoogle Scholar
  7. 7.
    Phan A N, Ryu C, Sharifi V N, Swithenbank J. Characterisation of slow pyrolysis products from segregated wastes for energy production. Journal of Analytical and Applied Pyrolysis. Pyrolysis, 2008, 81(1): 65–71CrossRefGoogle Scholar
  8. 8.
    Park E S, Kang B S, Kim J S. Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants. Energy & Fuels, 2008, 22(2): 1335–1340CrossRefGoogle Scholar
  9. 9.
    Solomon P R, Serio M A, Carangelo R M, Bassilakis R, Gravel D, Baillargeon M, Baudais F, Vail G. Analysis of the Argonne Premium coal samples by thermogravimetric Fourier transform infrared spectroscopy. Energy & Fuels, 1990, 4(3): 319–333CrossRefGoogle Scholar
  10. 10.
    Bassilakis R, Carangelo RM, Wójtowicz MA. TG-FTIR analysis of biomass pyrolysis. Fuel, 2001, 80(12): 1765–1786CrossRefGoogle Scholar
  11. 11.
    Wójtowicz M A, Bassilakis R, Smith WW, Chen Y G, Carangelo R M. Modeling the evolution of volatile species during tobacco pyrolysis. Journal of Analytical and Applied Pyrolysis, 2003, 66(1–2): 235–261CrossRefGoogle Scholar
  12. 12.
    de Jong W, Pironea A, Wójtowicz M A. Pyrolysis of Miscanthus Giganteus and wood pellets: TG-FTIR analysis and reaction kinetics. Fuel, 2003, 82(9): 1139–1147CrossRefGoogle Scholar
  13. 13.
    de Jong W, Nola G D, Venneker B C H, Spliethoff H, Wójtowicz M A. TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors. Fuel, 2007, 86(15): 2367–2376CrossRefGoogle Scholar
  14. 14.
    Nola G D, de Jong W, Spliethoff H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen. Fuel Processing Technology, 2010, 91(1): 103–115CrossRefGoogle Scholar
  15. 15.
    Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, Tang G Y, Wang Z. Wang. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2009, 85(1–2): 447–453CrossRefGoogle Scholar
  16. 16.
    Jiang X G, Li C Y, Wang T, Liu B C, Chi Y, Yan J H. TG-FTIR study of pyrolysis products evolving from dyestuff production waste. Journal of Analytical and Applied Pyrolysis, 2009, 84(1): 103–107CrossRefGoogle Scholar
  17. 17.
    Zhu HM, Yan J H, Jiang X G, Lai Y E, Cen K F. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis. Journal of Hazardous Materials, 2008, 153(1–2): 670–676CrossRefGoogle Scholar
  18. 18.
    Zhu HM, Jiang X G, Yan J H, Chi Y, Cen K F. TG-FTIR analysis of PVC thermal degradation and HCl removal. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 1–9CrossRefGoogle Scholar
  19. 19.
    Tao L, Zhao G B, Qian J, Qin Y K. TG-FTIR characterization of pyrolysis of waste mixtures of paint and tar slag. Journal of Hazardous Materials, 2010, 175(1–3): 754–761CrossRefGoogle Scholar
  20. 20.
    Marsnich K, Barontini F, Cozzani V, Petarca L. Advanced pulse calibration techniques for the quantitative analysis of TG-FTIR data. Thermochimica Acta, 2002, 390(1–2): 153–168CrossRefGoogle Scholar
  21. 21.
    Capart R, Khezami L, Burnha A K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta, 2004, 417(1): 79–89CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yuheng Feng
    • 1
  • Xuguang Jiang
    • 1
    Email author
  • Yong Chi
    • 1
  • Xiaodong Li
    • 1
  • Hongmei Zhu
    • 2
  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouChina
  2. 2.Hangzhou Huanjie Environment Engineering Co. Ltd.HangzhouChina

Personalised recommendations