Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)

  • Chad D. Vecitis
  • Hyunwoong Park
  • Jie Cheng
  • Brian T. Mader
  • Michael R. Hoffmann
Feature Article

Abstract

Fluorochemicals (FCs) are oxidatively recalcitrant, environmentally persistent, and resistant to most conventional treatment technologies. FCs have unique physiochemical properties derived from fluorine which is the most electronegative element. Perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) have been detected globally in the hydrosphere, atmosphere and biosphere. Reducing treatment technologies such as reverses osmosis, nano-filtration and activated carbon can remove FCs from water. However, incineration of the concentrated waste is required for complete FC destruction. Recently, a number of alternative technologies for FC decomposition have been reported. The FC degradation technologies span a wide range of chemical processes including direct photolysis, photocatalytic oxidation, photochemical oxidation, photochemical reduction, thermally-induced reduction, and sonochemical pyrolysis. This paper reviews these FC degradation technologies in terms of kinetics, mechanism, energetic cost, and applicability. The optimal PFOS/PFOA treatment method is strongly dependent upon the FC concentration, background organic and metal concentration, and available degradation time.

Keywords

fluorochemical (FC) degradation technologies perfluoroctanesulfonate (PFOS) perfluorooctanoate (PFOA) oxidation reduction photolysis thermolysis review 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goss K U. The pK(a) values of PFOA and other highly fluorinated carboxylic acids. Environmental Science & Technology, 2008, 42 (2): 456–458CrossRefGoogle Scholar
  2. 2.
    Goss K U, Bronner, G. What is so special about the sorption behavior of highly fluorinated compounds? Journal of Physical Chemistry A, 2006, 110(30): 9518–9522CrossRefGoogle Scholar
  3. 3.
    Goss K U, Bronner G, Harner T, Monika H, Schmidt T C. The partition behavior of fluorotelomer alcohols and olefins. Environmental Science & Technology, 2006, 40(11): 3572–3577CrossRefGoogle Scholar
  4. 4.
    Wardman P. Reduction potentials of one-electron couples involving free-radicals in aqueous-solution. Journal of Physical and Chemical Reference Data, 1989, 18(4): 1637–1755Google Scholar
  5. 5.
    Office of Pollution Prevention and Toxics, Docket AR226-0547, ed. The Science of Organic Fluorochemistry. Washington DC: US Environmental Protection Agency, 1999, 12Google Scholar
  6. 6.
    Office of Pollution Prevention & Toxics, Docket AR226-1699, ed. Removal of PFOA with Granular Activated Carbon: 3M Wastewater Treatment System Monitoring. Washington DC: US Environmental Protection Agency, 2004, 5Google Scholar
  7. 7.
    Sinclair E, Kannan K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environmental Science & Technology, 2006, 40(5): 1408–1414CrossRefGoogle Scholar
  8. 8.
    Schultz M M, Higgins C P, Huset C A, Luthy R G, Barofsky D F, Field J A. Fluorochemical mass flows in a municipal wastewater treatment facility. Environmental Science & Technology, 2006, 40: 7350–7357CrossRefGoogle Scholar
  9. 9.
    Shinoda K, Hato M, Hayashi T. Physicochemical properties of aqueous-solutions of fluorinated surfactants. Journal of Physical Chemistry, 1972, 76(6): 909–914CrossRefGoogle Scholar
  10. 10.
    Lopez-Fontan J L, Sarmiento F, Schulz P C. The aggregation of sodium perfluorooctanoate in water. Colloid & Polymer Science, 2005, 283(8): 862–871CrossRefGoogle Scholar
  11. 11.
    Lu J R, Ottewill R H, Rennie A R. Adsorption of ammonium perfluorooctanoate at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183: 15–26CrossRefGoogle Scholar
  12. 12.
    Simister E A, Lee E M, Lu J R, Thomas R K, Ottewill R H, Rennie A R, Penfold J. Adsorption of ammonium perfluorooctanoate and ammonium decanoate at the air solution interface. Journal of the Chemical Society, Faraday Transactions articles, 1992, 88(20): 3033–3041CrossRefGoogle Scholar
  13. 13.
    Boulanger B, Peck A M, Schnoor J L, Hornbuckle K C. Mass budget of perfluorooctane surfactant in Lake Ontario. Environmental Science & Technology, 2005, 39(1): 74–79CrossRefGoogle Scholar
  14. 14.
    Boulanger B, Vargo J, Schnoor J L, Hornbuckle K C. Detection of perfluorooctane surfactants in Great Lakes water. Environmental Science & Technology, 2004, 38(15): 4064–4070CrossRefGoogle Scholar
  15. 15.
    Hansen K J, Johnson H O, Eldridge J S, Butenhoff J L, Dick L A. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environmental Science & Technology, 2002, 36(8): 1681–1685CrossRefGoogle Scholar
  16. 16.
    Harada K, Saito N, Sasaki K, Inoue K, Koizumi A. Perfluorooctane sulfonate contamination of drinking water in the Tama River, Japan: Estimated effects on resident serum levels. Bulletin of Environmental Contamination and Toxicology, 2003, 71(1): 31–36CrossRefGoogle Scholar
  17. 17.
    Kim S K, Kannan K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: Relative importance of pathways to contamination of urban lakes. Environmental Science & Technology, 2007, 41(24): 8328–8334CrossRefGoogle Scholar
  18. 18.
    McLachlan M S, Holmstrom K E, Reth M, Berger U. Riverine discharge of perfluorinated carboxylates from the European continent. Environmental Science & Technology, 2007, 41(21): 7260–7265CrossRefGoogle Scholar
  19. 19.
    Moody C A, Hebert G N, Strauss S H, Field J A. Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. Journal of Environmental Monitoring, 2003, 5(2): 341–345CrossRefGoogle Scholar
  20. 20.
    Moody C A, Martin J W, Kwan W C, Muir D C G, Mabury S C. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etohicoke Creek. Environmental Science & Technology, 2002, 36 (4): 545–551CrossRefGoogle Scholar
  21. 21.
    Schultz M M, Barofsky D F, Field J A. Fluorinated alkyl surfactants, 2003, 20(5): 487–501Google Scholar
  22. 22.
    Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T. A global survey of perfluorinated acids in oceans. Marine Pollution Bulletin, 2005, 51(8-12): 658–668CrossRefGoogle Scholar
  23. 23.
    Office of Pollution Prevention & Toxics, Docket AR226-0620, ed. Sulfonated perfluorochemicals in the environment: Sources, dispersion, fate and effects. Washington DC: US Environmental Protection Agency, 2000, 51Google Scholar
  24. 24.
    Armitage J, Cousins I T, Buck R C, Prevedouros K, Russell M H, MacLeod M, Korzeniowski S H. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environmental Science & Technology, 2006, 40(22): 6969–6975CrossRefGoogle Scholar
  25. 25.
    Saito N, Harada K, Inoue K, Sasaki K, Yoshinaga T, Koizumi A. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. Journal of Occupational Health, 2004, 46 (1): 49–59CrossRefGoogle Scholar
  26. 26.
    Schultz M M, Barofsky D F, Field J A. Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environmental Science & Technology, 2004, 38(6): 1828–1835CrossRefGoogle Scholar
  27. 27.
    Scott B F, Moody C A, Spencer C, Small J M, Muir D C G, Mabury S A. Analysis for perfluorocarboxylic acids/anions in surface waters and precipitation using GC-MS and analysis of PFOA from large-volume samples. Environmental Science & Technology, 2006, 40(20): 6405–6410CrossRefGoogle Scholar
  28. 28.
    Scott B F, Spencer C, Mabury S A, Muir D C G. Poly and perfluorinated carboxylates in north American precipitation. Environmental Science & Technology, 2006, 40(23): 7167–7174CrossRefGoogle Scholar
  29. 29.
    Senthilkumar K, Ohi E, Sajwan K, Takasuga T, Kannan K. Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bulletin of Environmental Contamination and Toxicology, 2007, 79(4): 427–431CrossRefGoogle Scholar
  30. 30.
    So M K, Miyake Y, Yeung W Y, Ho Y M, Taniyasu S, Rostkowski P, Yamashita N, Zhou B S, Shi X J, Wang J X, Giesy J P, Yu H, Lam P K S. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere, 2007, 68(11): 2085_2095.CrossRefGoogle Scholar
  31. 31.
    So M K, Taniyasu S, Yamashita N, Giesy J P, Zheng J, Fang Z, Im S H, Lam P K S. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology, 2004, 38(15): 4056–4063CrossRefGoogle Scholar
  32. 32.
    Yamashita N, Kannan K, Taniyasu S, Horii Y, Okazawa T, Petrick G, Gamo T. Analysis of perfluorinated acids at parts-perquadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. Environmental Science & Technology, 2004, 38(21): 5522–5528CrossRefGoogle Scholar
  33. 33.
    Yamashita N, Taniyasu S, Petrick G, Wei S, Gamo T, Lam P K S, Kannan K. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere, 2008, 70(7): 1247–1255CrossRefGoogle Scholar
  34. 34.
    Calafat A M, Kuklenyik Z, Caudill S P, Reidy J A, Needham L L. Perfluorochemicals in pooled serum samples from United States residents in 2001 and 2002. Environmental Science & Technology, 2006, 40(7): 2128–2134CrossRefGoogle Scholar
  35. 35.
    Calafat A M, Needham L L, Kuklenyik Z, Reidy J A, Tully J S, Aguilar-Villalobos M, Naeher L P. Perfluorinated chemicals in selected residents of the American continent. Chemosphere, 2006, 63(3): 490–496CrossRefGoogle Scholar
  36. 36.
    Martin JW, Whittle DM, Muir D C G, Mabury S A. Perfluoroalkyl contaminants in a food web from lake Ontario. Environmental Science & Technology, 2004, 38(20): 5379–5385CrossRefGoogle Scholar
  37. 37.
    Martin JW, Smithwick MM, Braune BM, Hoekstra P F, Muir D C G, Mabury S A. Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environmental Science & Technology, 2004, 38(2): 373–380CrossRefGoogle Scholar
  38. 38.
    Giesy J P, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology, 2001, 35(7): 1339–1342CrossRefGoogle Scholar
  39. 39.
    Holmstrom K E, Jarnberg U, Bignert A. Temporal trends of PFOS and PFOA in guillemot eggs from the Baltic Sea, 1968-2003. Environmental Science & Technology, 2005, 39(1): 80–84CrossRefGoogle Scholar
  40. 40.
    Houde M, Balmer B C, Brandsma S, Wells R S, Rowles T K, Solomon K R, Muir D C G. Perfluoroalkyl compounds in relation to life-history and reproductive parameters in bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, Florida, USA. Environmental Toxicology and Chemistry, 2006, 25(9): 2405–2412CrossRefGoogle Scholar
  41. 41.
    Houde M, Martin J W, Letcher R J, Solomon K R, Muir D C G. Biological monitoring of polyfluoroalkyl substances: A review. Environmental Science & Technology, 2006, 40(11): 3463–3473CrossRefGoogle Scholar
  42. 42.
    Kannan K, Choi J W, Iseki N, Senthilkumar K, Kim D H, Masunaga S, Giesy J P. Concentrations of perfluorinated acids in livers of birds from Japan and Korea. Chemosphere, 2002, 49(3): 225–231CrossRefGoogle Scholar
  43. 43.
    Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar K S, Loganathan B G, Mohd M A, Olivero J, Van Wouwe N, Yang J H, Aldous KM. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environmental Science & Technology, 2004, 38(17): 4489–4495CrossRefGoogle Scholar
  44. 44.
    Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy J P. Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas. Environmental Science & Technology, 2002, 36(15): 3210–3216CrossRefGoogle Scholar
  45. 45.
    Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany J F, Hansen K J, Jones P D, Helle E, Nyman M, Giesy J P. Accumulation of perfluorooctane sulfonate in marine mammals. Environmental Science & Technology, 2001, 35(8): 1593–1598CrossRefGoogle Scholar
  46. 46.
    Kannan K, Newsted J, Halbrook R S, Giesy J P. Perfluorooctanesulfonate and related fluorinated hydrocarbons in mink and river otters from the United States. Environmental Science & Technology, 2002, 36(12): 2566–2571CrossRefGoogle Scholar
  47. 47.
    Kannan K, Tao L, Sinclair E, Pastva S D, Jude D J, Giesy J P. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Archives of Environmental Contamination and Toxicology, 2005, 48(4): 559–566CrossRefGoogle Scholar
  48. 48.
    Nakata H, Kannan K, Nasu T, Cho H S, Sinclair E, Takemura A. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: Environmental fate of perfluorooctane sulfonate in aquatic ecosystems. Environmental Science & Technology, 2006, 40(16): 4916–4921CrossRefGoogle Scholar
  49. 49.
    Olsen G W, Church T R, Larson E B, van Belle G, Lundberg J K, Hansen K J, Burris J M, Mandel J H, Zobel L R. Serum concentrations of perfluorooctanesulfonate and other fluorochemicals in an elderly population from Seattle, Washington. Chemosphere, 2004, 54(11): 1599–1611CrossRefGoogle Scholar
  50. 50.
    Olsen G W, Church T R, Miller J P, Burris J M, Hansen K J, Lundberg J K, Armitage J B, Herron R M, Medhdizadehkashi Z, Nobiletti J B, O’Neill E M, Mandel J H, Zobel L R. Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors. Environmental Health Perspectives, 2003, 111(16): 1892–1901Google Scholar
  51. 51.
    Olsen G W, Huang H Y, Helzlsouer K J, Hansen K J, Butenhoff J L, Mandel J H. Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood. Environmental Health Perspectives, 2005, 113(5): 539–545CrossRefGoogle Scholar
  52. 52.
    Olsen G W, Mair D C, Reagen W K, Ellefson M E, Ehresman D J, Butenhoff J L, Zobel L R. Preliminary evidence of a decline in perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations in American Red Cross blood donors. Chemosphere, 2007, 68(1): 105–111CrossRefGoogle Scholar
  53. 53.
    Sinclair E, Mayack D T, Roblee K, Yamashita N, Kannan K. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State. Archives of Environmental Contamination and Toxicology, 2006, 50(3): 398–410CrossRefGoogle Scholar
  54. 54.
    Smithwick M, Mabury S A, Solomon K R, Sonne C, Martin J W, Born E W, Dietz R, Derocher A E, Letcher R J, Evans T J, Gabrielsen G W, Nagy J, Stirling I, Taylor M K, Muir D C G. Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus). Environmental Science & Technology, 2005, 39(15): 5517–5523CrossRefGoogle Scholar
  55. 55.
    Taniyasu S, Kannan K, Horii Y, Hanari N, Yamashita N. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environmental Science & Technology, 2003, 37(12): 2634–2639CrossRefGoogle Scholar
  56. 56.
    Tomy G T, Budakowski W, Halldorson T, Helm P A, Stern G A, Friesen K, Pepper K, Tittlemier S A, Fisk AT. Fluorinated organic compounds in an eastern Arctic marine food web. Environmental Science & Technology, 2004, 38(24): 6475–6481CrossRefGoogle Scholar
  57. 57.
    Van de Vijver K I, Hoff P T, Das K, Van Dongen W, Esmans E L, Siebert U, Bouquegneau J M, Blust R, De Coen W M. Baseline study of perfluorochemicals in harbour porpoises (Phocoena phocoena) from Northern Europe. Marine Pollution Bulletin, 2004, 48(9-10): 992–997CrossRefGoogle Scholar
  58. 58.
    Verreault J, Berger U, Gabrielsen G W. Trends of perfluorinated alkyl substances in herring gull eggs from two coastal colonies in northern norway: 1983-2003. Environmental Science & Technology, 2007, 41(19): 6671–6677CrossRefGoogle Scholar
  59. 59.
    Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 2006, 40(1): 32–44CrossRefGoogle Scholar
  60. 60.
    Kubwabo C, Stewart B, Zhu J P, Marro L. Occurrence of perfluorosulfonates and other perfluorochemicals in dust from selected homes in the city of Ottawa, Canada. Journal of Environmental Monitoring, 2005, 7(11): 1074–1078CrossRefGoogle Scholar
  61. 61.
    Moriwaki H, Takata Y, Arakawa R. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in vacuum cleaner dust collected in Japanese homes. Journal of Environmental Monitoring, 2003, 5(5): 753–757CrossRefGoogle Scholar
  62. 62.
    Ellis D A, Mabury S A, Martin J W, Muir D C G. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature, 2001, 412(6844): 321–324CrossRefGoogle Scholar
  63. 63.
    Tittlemier S A, Pepper K, Seymour C, Moisey J, Bronson R, Cao X L, Dabeka R W. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. Journal of Agricultural and Food Chemistry, 2007, 55(8): 3203–3210CrossRefGoogle Scholar
  64. 64.
    Begley T H, White K, Honigfort P, Twaroski M L, Neches R, Walker R A. Perfluorochemicals: Potential sources of and migration from food packaging. Food Additives and Contaminants, 2005, 22(10): 1023–1031CrossRefGoogle Scholar
  65. 65.
    Young C J, Furdui V I, Franklin J, Koerner R M, Muir D C G, Mabury S A. Perfluorinated acids in arctic snow: New evidence for atmospheric formation. Environmental Science & Technology, 2007, 41(10): 3455–3461CrossRefGoogle Scholar
  66. 66.
    D’Eon J C, Hurley MD, Wallington T J, Mabury S A. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and mechanism of reaction with OH. Environmental Science & Technology, 2006, 40(6): 1862–1868CrossRefGoogle Scholar
  67. 67.
    Martin J W, Ellis D A, Mabury S A, Hurley M D, Wallington T J. Atmospheric chemistry of perfluoroalkanesulfonamides: Kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide. Environmental Science & Technology, 2006, 40(3): 864–872CrossRefGoogle Scholar
  68. 68.
    Office of Pollution Prevention and Toxics, Docket AR226-0380, ed. Study of the Stability of MeFOSEA in Aqueous Buffers. Washington DC: US Environmental Protection Agency, 1999, 69Google Scholar
  69. 69.
    Tomy G T, Tittlemier S A, Palace V P, Budakowski W R, Braekevelt E, Brinkworth L, Friesen K. Biotransformation of Nethyl perfluorooctanesulfonamide by rainbow trout (Onchorhynchus mykiss) liver microsomes. Environmental Science & Technology, 2004, 38(3): 758–762CrossRefGoogle Scholar
  70. 70.
    Xu L, Krenitsky D M, Seacat A M, Butenhoff J L, Anders M W. Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooetanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. Chemical Research in Toxicology, 2004, 17(6): 767–775CrossRefGoogle Scholar
  71. 71.
    Office of Pollution Prevention and Toxics, Docket AR226-0163, ed. Additional Characterization of Metabolites of T-6292, T-6293 and T-6294 from Rat and Human Hepatocytes. Washington DC: US Environmental Protection Agency, 1998, 69Google Scholar
  72. 72.
    Office of Pollution Prevention and Toxics, Docket AR226-0166, ed. Effect of N-Alkyl Perfluorooctylsulfonamides on Mitochondrial Bioenergetics In Vitro. Washington DC: US Environmental Protection Agency, 1998, 10.Google Scholar
  73. 73.
    Hagen D F, Belisle J, Johnson J D, Venkateswarlu P. Characterization of Fluorinated Metabolites by a Gas Chromatographic-Helium Microwave Plasma Detector-the Biotransformation of 1h,1h,2h,2h-Perfluorodecanol to Perfluorooctanoate. Analytical Biochemistry, 1981, 118(2): 336–343CrossRefGoogle Scholar
  74. 74.
    Ellis D A, Martin J W, De Silva A O, Mabury S A, Hurley M D, Andersen M P S, Wallington T J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environmental Science & Technology, 2004, 38(12): 3316–3321CrossRefGoogle Scholar
  75. 75.
    Stock N L, Lau F K, Ellis D A, Martin JW, Muir D C G, Mabury S A. Polyfluorinated telomer alcohols and sulfonamides in the worth American troposphere. Environmental Science & Technology, 2004, 38(4): 991–996CrossRefGoogle Scholar
  76. 76.
    Shoeib M, Harner T, Vlahos P. Perfluorinated chemicals in the Arctic atmosphere. Environmental Science & Technology, 2006 40(24): 7577–7583CrossRefGoogle Scholar
  77. 77.
    Office of Pollution Prevention & Toxics, Docket AR226-0588, ed. Phase-out Plan for POSF-Based Products. Washington DC: US Environmental Protection Agency, 2000, 11Google Scholar
  78. 78.
    Yarwood G, Kemball-Cook S, Keinath M, Waterland R L, Korzeniowski S H, Buck R C, Russell M H, Washburn S T. High-resolution atmospheric modeling of fluorotelomer alcohols and perfluorocarboxylic acids in the North American troposphere. Environmental Science & Technology, 2007, 41(16): 5756–5762CrossRefGoogle Scholar
  79. 79.
    Schwarzenbach R P, Escher B I, Fenner K, Hofstetter T B, Johnson C A, von Gunten U, Wehrli B. The challenge of micropollutants in aquatic systems. Science, 2006, 313(5790): 1072–1077CrossRefGoogle Scholar
  80. 80.
    Lampert D J, Frisch M A, Speitel G E. Removal of Perfluorooctanoic Acid and Perfluorooctane Sulfonate fromWastewater by Ion Exchange. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2007, 11(1): 60–68CrossRefGoogle Scholar
  81. 81.
    Tsang W, Burgess D R, Babushok V. On the incinerability of highly fluorinated organic compounds. Combustion Science and Technology, 1998, 139(1–6): 385–402CrossRefGoogle Scholar
  82. 82.
    Higgins C P, Field J A, Criddle C S, Luthy R G. Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environmental Science & Technology, 2005, 39(11): 3946–3956CrossRefGoogle Scholar
  83. 83.
    Schroder H F. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. Journal of Chromatography A, 2003, 1020(1): 131–151CrossRefGoogle Scholar
  84. 84.
    Hollingsworth J, Sierra-Alvarez R, Zhou M, Ogden K L, Field J A. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere, 2005, 59(9): 1219–1228CrossRefGoogle Scholar
  85. 85.
    Key B D, Howell R D, Criddle C S. Defluorination of organofluorine sulfur compounds by Pseudomonas sp. strain D2. Environmental Science & Technology, 1998, 32(15): 2283–2287CrossRefGoogle Scholar
  86. 86.
    Office of Pollution Prevention & Toxics, Docket AR226-0489, ed. Biodegradation studies of fluorocarbons-III. Washington DC: US Environmental Protection Agency, 1978, 19Google Scholar
  87. 87.
    Office of Pollution Prevention & Toxics, Docket AR226-0058, ed. Biodegradation studies of Fluorocarbons. Washington DC: US Environmental Protection Agency, 1994, 4Google Scholar
  88. 88.
    Oppenlander T. Photochemical Purification of Water and Air. Weinheim: Wiley-VCH, 2003Google Scholar
  89. 89.
    Schroder H F, Meesters R J W. Stability of fluorinated surfactants in advanced oxidation processes-A follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. Journal of Chromatography A, 2005, 1082(1): 110–119CrossRefGoogle Scholar
  90. 90.
    Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental Science & Technology, 2005, 39(9): 3388–3392CrossRefGoogle Scholar
  91. 91.
    Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science & Technology, 2004, 38(22): 6118–6124CrossRefGoogle Scholar
  92. 92.
    Chen J, Zhang P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Science & Technology, 2006, 54(11-12): 317–325CrossRefGoogle Scholar
  93. 93.
    Chen J, Zhang P, Liu J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences, 2007, 19(4): 387–390CrossRefGoogle Scholar
  94. 94.
    Yamamoto T, Noma Y, Sakai S, Shibata Y. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environmental Science & Technology, 2007, 41(16): 5660–5665CrossRefGoogle Scholar
  95. 95.
    Office of Pollution Prevention & Toxics, Docket AR226-0056, ed. Summary of Photolysis Studies using Simulated Sunlight on the Potassium Salt of Perfluorooctanesulfonic Acid. Washington DC: US Environmental Protection Agency, 1978, 17Google Scholar
  96. 96.
    Office of Pollution Prevention & Toxics, Docket AR226-0490, ed. FC-143 Photolysis Study using Simulated Sunlight. Washington DC: US Environmental Protection Agency, 1979, 15Google Scholar
  97. 97.
    Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science & Technology, 2005, 39(7): 2383–2388CrossRefGoogle Scholar
  98. 98.
    Hori H, Yamamoto A, Kutsuna S. Efficient photochemical decomposition of long-chain perfluorocarboxylic acids by means of an aqueous/liquid CO2 biphasic system. Environmental Science & Technology, 2005, 39(19): 7692–7697CrossRefGoogle Scholar
  99. 99.
    Kutsuna S, Hori H. Rate constants for aqueous-phase reactions of SO-4 with C2F5C(O)O- and C3F7C(O)O- at 298 K. International Journal of Chemical Kinetics, 2007, 39(5) 276–288CrossRefGoogle Scholar
  100. 100.
    Chen J, Zhang P Y, Zhang L. Photocatalytic decomposition of environmentally persistent perfluorooctanoic acid. Chemistry Letters, 2006, 35(2): 230–231CrossRefGoogle Scholar
  101. 101.
    Hori H, Hayakawa E, Koike K, Einaga H, Ibusuki T. Decomposition of nonafluoropentanoic acid by heteropolyacid photocatalyst H3PW12O40 in aqueous solution. Journal of Molecular Catalysis A-Chemical, 2004, 211(1-2): 35–41CrossRefGoogle Scholar
  102. 102.
    Kutsuna S, Nagaoka Y, Takeuchi K, Hori H. TiO2-induced heterogeneous photodegradation of a fluorotelomer alcohol in air. Environmental Science & Technology, 2006, 40, 6824–6829CrossRefGoogle Scholar
  103. 103.
    Yuan Q, Ravikrishna R, Valsaraj K T. Reusable adsorbents for dilute solution separation. 5. Photodegradation of organic compounds on surfactant-modified titania. Separation and Purification Technology, 2001, 24(1–2): 309–318Google Scholar
  104. 104.
    Hidaka H, Jou H, Nohara K, Zhao J. Photocatalytic degradation of the hydrophobic pesticide permethrin in fluoro surfactant/TiO2 aqueous dispersions. Chemosphere, 1992, 25(11): 1589–1597CrossRefGoogle Scholar
  105. 105.
    Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. Journal of Physical Chemistry A, 2008, 112(18): 4261–4270CrossRefGoogle Scholar
  106. 106.
    Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Enhancement of perlfuorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces. Journal of Physical Chemistry C, 2008, 112(43): 16850–16857CrossRefGoogle Scholar
  107. 107.
    Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects. Environmental Science & Technology, 2008, 42(21): 8057–8063CrossRefGoogle Scholar
  108. 108.
    Sundstrom D W, Klei H E. Wastewater Treatment. Englewood Cliffs: Prentice-Hall, 1979Google Scholar
  109. 109.
    Investigation of Perfluorochemical (PFC) Contamination in Minnesota. In: Phase 1 ed. Minnesota: Senate Environment Committee, 2006, 79Google Scholar
  110. 110.
    Boulanger B, Vargo J D, Schnoor J L, Hornbuckle K C. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. Environmental Science & Technology, 2005, 39(15): 5524–5530CrossRefGoogle Scholar
  111. 111.
    Loganathan B G, Sajwan K S, Sinclair E, Kumar K S, Kannan K. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Research, 2007, 41(20): 4611–4620CrossRefGoogle Scholar
  112. 112.
    Office of Pollution Prevention and Toxics, Docket AR226-1264, ed. Accelerated Biodegradation of 8-2 Telomer B Alcohol. Washington DC: US Environmental Protection Agency, 2003, 45Google Scholar
  113. 113.
    Yamada T, Taylor P H, Buck R C, Kaiser M A, Giraud R J. Thermal degradation of fluorotelomer treated articles and related materials. Chemosphere, 2005, 61(7): 974–984CrossRefGoogle Scholar
  114. 114.
    Tang C Y Y, Fu Q S, Robertson A P, Criddle C S, Leckie J O. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science & Technology, 2006, 40(23): 7343–7349CrossRefGoogle Scholar
  115. 115.
    Tang C Y, Fu Q S, Criddle C S, Leckie J O. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science & Technology, 2007, 41(6): 2008–2014CrossRefGoogle Scholar
  116. 116.
    Higgins C P, Luthy R G. Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology, 2006, 40(23): 7251–7256CrossRefGoogle Scholar
  117. 117.
    Johnson R L, Anschutz A J, Smolen J M, Simcik M F, Penn R L. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces. Journal of Chemical and Engineering Data, 2007, 52(4): 1165–1170CrossRefGoogle Scholar
  118. 118.
    Pera-Titus M, Garcia-Molina V, Banos M A, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis B-Environmental, 2004, 47(4): 219–256CrossRefGoogle Scholar
  119. 119.
    Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999, 53(1): 51–59CrossRefGoogle Scholar
  120. 120.
    Legrini O, Oliveros E, Braun A M. Photochemical processes for water-treatment. Chemical Reviews, 1993, 93(2): 671–698CrossRefGoogle Scholar
  121. 121.
    Kochany J, Bolton J R. Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of hydroxyl radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of hydrogen peroxide. Environmental Science & Technology, 1992, 26(2): 262–265CrossRefGoogle Scholar
  122. 122.
    Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic-compounds in water. 1. Non-dissociating organic-compounds. Water Research, 1983, 17(2): 173–183CrossRefGoogle Scholar
  123. 123.
    Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic-compounds in water. 2. Dissociating organic-compounds. Water Research, 1983, 17(2): 185–194CrossRefGoogle Scholar
  124. 124.
    Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (PH 3-8) of iron (?) with hydrogen peroxide: the photo-Fenton reaction. Environmental Science & Technology, 1992, 26(2): 313–319CrossRefGoogle Scholar
  125. 125.
    Hua I, Hoffmann M R. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environmental Science & Technology, 1997, 31(8): 2237–2243CrossRefGoogle Scholar
  126. 126.
    Acero J L, Haderlein S B, Schmidt T C, Suter M J F, Von Gunten U. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: Efficiency of the processes and bromate formation. Environmental Science & Technology, 2001, 35(21): 4252–4259CrossRefGoogle Scholar
  127. 127.
    Buxton G V, Greenstock C L, Helman W P, Ross A B. Criticalreview of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (ùOH/ùO- ) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513–886Google Scholar
  128. 128.
    An Y J, Jeong S W. Interactions of perfluorinated surfactant with polycyclic aromatic hydrocarbons: Critical micelle concentration and solubility enhancement measurements. Journal of Colloid and Interface Science, 2001, 242(2): 419–424CrossRefGoogle Scholar
  129. 129.
    An Y J, Carraway E R, Schlautman M A. Solubilization of polycyclic aromatic hydrocarbons by perfluorinated surfactant micelles. Water Research, 2002, 36(1): 300–308CrossRefGoogle Scholar
  130. 130.
    Huang Q, Hong C S. TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant. Chemosphere, 2000, 41(6): 871–879CrossRefGoogle Scholar
  131. 131.
    Gromadzka K, Swietlik J. Organic micropollutants degradation in ozone-loaded system with perfluorinated solvent. Water Research, 2007, 41(12): 2572–2580CrossRefGoogle Scholar
  132. 132.
    Waldemer R H, Tratnyek P G, Johnson R L, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environmental Science & Technology, 2007, 41(3): 1010–1015CrossRefGoogle Scholar
  133. 133.
    Lau T K, Chu W, Graham N J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O2 — 8: Study of reaction mechanisms via dimerization and mineralization. Environmental Science & Technology, 2007, 41(2): 613–619CrossRefGoogle Scholar
  134. 134.
    Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 2004, 38(13): 3705–3712CrossRefGoogle Scholar
  135. 135.
    Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology, 2003, 37(20): 4790–4797CrossRefGoogle Scholar
  136. 136.
    Ball D L, Edwards J O. The Kinetics and mechanism of the decomposition of Caros acid. 1. Journal of the American Chemical Society, 1956, 78(6): 1125–1129CrossRefGoogle Scholar
  137. 137.
    Dogliott L, Hayon E. Flash photolysis of persulfate ions in aqueous solutions. Study of sulfate and ozonide radical anions. Journal of Physical Chemistry, 1967, 71(8): 2511–2516CrossRefGoogle Scholar
  138. 138.
    Kolthoff I M, Miller I K. The Chemistry of Persulfate. 1. The Kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society, 1951, 73(7): 3055–3059CrossRefGoogle Scholar
  139. 139.
    Maruthamuthu P, Padmaja S, Huie R E. Rate constants for some reactions of free-radicals with haloacetates in aqueous solution. International Journal of Chemical Kinetics, 1995, 27(6): 605–612CrossRefGoogle Scholar
  140. 140.
    Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027–1284Google Scholar
  141. 141.
    Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry. 2nd ed. New York: Wiley, 2003Google Scholar
  142. 142.
    Zepp R G, Cline D M. Rates of direct photolysis in aquatic environment. Environmental Science & Technology, 1977, 11(4): 359–366CrossRefGoogle Scholar
  143. 143.
    Office of Pollution Prevention & Toxics, Docket AR226-0363, ed. FM-3422: Photolysis Study using Simulated Sunlight. Washington DC: US Environmental Protection Agency, 1981, 20Google Scholar
  144. 144.
    Gauthier S A, Mabury S A. Aqueous photolysis of 8: 2 fluorotelomer alcohol. Environmental Toxicology and Chemistry, 2005, 24(8): 1837–1846CrossRefGoogle Scholar
  145. 145.
    Lee C, Choi W, Kim Y G, Yoon J. UV photolytic mechanism of Nnitrosodimethylamine in water: Dual pathways to methylamine versus dimethylamine. Environmental Science & Technology, 2005, 39(7): 2101–2106CrossRefGoogle Scholar
  146. 146.
    Getoff N, Schenck G O. Primary products of liquid water photolysis at 1236, 1470 and 1849 Å. Photochemistry and Photobiology, 1968, 8(3): 167–178CrossRefGoogle Scholar
  147. 147.
    Fricke H, Hart E J. Studies of reactions induced by the photoactivation of the water molecule. I. Journal of Chemical Physics, 1936, 4(7): 418–422CrossRefGoogle Scholar
  148. 148.
    Oppenlander T, Gliese S. Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UVoxidation (H2O-VUV) with an incoherent xenon-excimer lamp at 172 nm. Chemosphere, 2000, 40(1): 15–21CrossRefGoogle Scholar
  149. 149.
    Jakob L, Hashem T M, Burki S, Guindy N M, Braun A M. Vacuum-ultraviolet (VUV) photolysis of water: Oxidative degradation of 4-chlorophenol. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 75(2) 97–103CrossRefGoogle Scholar
  150. 150.
    Quici N, Litter M I, Braun A A, Oliveros E. Vacuum-UVphotolysis of aqueous solutions of citric and gallic acids. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197(2-3): 306–312CrossRefGoogle Scholar
  151. 151.
    Hori H, Nagaoka Y, Murayama M, Kutsuna S. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environmental Science & Technology, 2008, 42, 7438–7443CrossRefGoogle Scholar
  152. 152.
    Osborne M C, Li Q, Smith I W M. Products of the ultraviolet photodissociation of trifluoroacetic acid and acrylic acid. Physical Chemistry Chemical Physics, 1999, 1(7): 1447–1454CrossRefGoogle Scholar
  153. 153.
    Ozer R R, Ferry J L. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems. Environmental Science & Technology, 2001, 35(15): 3242–3246CrossRefGoogle Scholar
  154. 154.
    Fox M A, Cardona R, Gaillard E. Photoactivation of metal-oxide surfaces: Photocatalyzed oxidation of alcohols by heteropolytungstates. Journal of the American Chemical Society, 1987, 109(21): 6347–6354CrossRefGoogle Scholar
  155. 155.
    Lee J, Kim J, Choi W. Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environmental Science & Technology, 2007, 41(9): 3335–3340CrossRefGoogle Scholar
  156. 156.
    Weinstock I A. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chemical Reviews, 1998, 98(1): 113–170CrossRefGoogle Scholar
  157. 157.
    Akid R, Darwent J R. Heteropolytungstates as catalysts for the photochemical reduction of oxygen and water. Journal of the Chemical Society. Dalton Transactions, 1985, 2: 395–399CrossRefGoogle Scholar
  158. 158.
    Hori H, Takano Y, Koike K, Takeuchi K, Einaga H. Decomposition of environmentally persistent trifluoroacetic acid to fluoride ions by a homogeneous photocatalyst in water. Environmental Science & Technology, 2003, 37(2): 418–422CrossRefGoogle Scholar
  159. 159.
    Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96CrossRefGoogle Scholar
  160. 160.
    Kormann C, Bahnemann D W, Hoffmann M R. Photolysis of chloroform and other organic-molecules in aqueous TiO2 suspensions. Environmental Science & Technology, 1991, 25(3): 494–500CrossRefGoogle Scholar
  161. 161.
    Dillert R, Bahnemann D, Hidaka H. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide. Chemosphere, 2007, 67(4): 785–792CrossRefGoogle Scholar
  162. 162.
    Guan B, Zhi J, Zhang X, Murakami T, Fujishima A. Electrochemical route for fluorinated modification of boron-doped diamond surface with perfluorooctanoic acid. Electrochemistry Communications, 2007, 9(12): 2817–2821CrossRefGoogle Scholar
  163. 163.
    Lee J, Seliger H H. Quantum yield of ferrioxalate actinometer. Journal of Chemical Physics, 1964, 40(2): 519–523CrossRefGoogle Scholar
  164. 164.
    Hatchard C G, Parker C A. A new sensitive chemical actinometer. 2. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1956, 235(1203): 518–536Google Scholar
  165. 165.
    Parker C A. A new sensitive chemical actinometer. 1. Some trials with potassium ferrioxalate. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1953, 220 (1140): 104–116CrossRefGoogle Scholar
  166. 166.
    Allmand A J, Webb W W. The photolysis of potassium ferrioxalate solutions. Part 1. Experimental. Journal of the Chemical Society, 1929: 1518–1531Google Scholar
  167. 167.
    Hori H, Yamamoto A, Koike K, Kutsuna S, Osaka I, Arakawa R. Photochemical decomposition of environmentally persistent shortchain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions. Chemosphere, 2007, 68(3): 572–5781CrossRefGoogle Scholar
  168. 168.
    Sayles G D, You G R, Wang M X, Kupferle M J. DDT, DDD, and DDE dechlorination by zero-valent iron. Environmental Science & Technology, 1997, 31(12): 3448–3454CrossRefGoogle Scholar
  169. 169.
    Yak H K, Wenclawiak B W, Cheng I F, Doyle J G, Wai C M. Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water. Environmental Science & Technology, 1999, 33(8): 1307–1310CrossRefGoogle Scholar
  170. 170.
    Jones C G, Silverman J, Al-Sheikhly M, Neta P, Poster D L. Dechlorination of polychlorinated biphenyls in industrial transformer oil by radiolytic and photolytic methods. Environmental Science & Technology, 2003, 37(24): 5773–5777CrossRefGoogle Scholar
  171. 171.
    Hinz D C, Wai C M, Wenclawiak B W. Remediation of a nonachloro biphenyl congener with zero-valent iron in subcritical water. Journal of Environmental Monitoring, 2000, 2(1): 45–48CrossRefGoogle Scholar
  172. 172.
    Zhang W X. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 2003, 5(3–4): 323–332CrossRefGoogle Scholar
  173. 173.
    Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154–2156CrossRefGoogle Scholar
  174. 174.
    Hori H, Nagaoka Y, Sano T, Kutsuna S. Iron-induced decomposition of perfluorohexanesulfonate in sub- and supercritical water. Chemosphere, 2008, 70(5): 800–806CrossRefGoogle Scholar
  175. 175.
    Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environmental Science & Technology, 2006, 40(3): 1049–1054CrossRefGoogle Scholar
  176. 176.
    Macnicol D D, Robertson C D. New and unexpected reactivity of saturated fluorocarbons. Nature, 1988, 332(6159): 59–61CrossRefGoogle Scholar
  177. 177.
    Shoute L C T, Mittal J P, Neta P. Fluoride elimination upon reaction of pentafluoroaniline with e(aq)(−), H, and OH radicals in aqueous solution. Journal of Physical Chemistry, 1996, 100(27): 11355–11359CrossRefGoogle Scholar
  178. 178.
    Shoute L C T, Mittal J P, Neta P. Reduction and defluorination of pentafluorophenol in aqueous solutions. Journal of Physical Chemistry, 1996, 100(8): 3016–3019CrossRefGoogle Scholar
  179. 179.
    Watson P L, Tulip T H, Williams I. Defluorination of perfluoroolefins by divalent lanthanoid reagents: Activating C-F Bonds. Organometallics, 1990, 9(7): 1999–2009CrossRefGoogle Scholar
  180. 180.
    Combellas C, Kanoufi F, Thiebault A. Reduction of polyfluorinated compounds. Journal of Physical Chemistry B, 2003, 107 (39): 10894–10905CrossRefGoogle Scholar
  181. 181.
    Corvaja C, Farnia G, Formenton G, Navarrini W, Sandona G, Tortelli V. Electrochemical-behavior and EPR of radical-anions of perfluoroalkyl-substituted olefins. Journal of Physical Chemistry, 1994, 98(9): 2307–2313CrossRefGoogle Scholar
  182. 182.
    Marsella J A, Gilicinski A G, Coughlin A M, Pez G P. Selective reduction of saturated perfluorocarbons. Journal of Organic Chemistry, 1992, 57(10): 2856–2860CrossRefGoogle Scholar
  183. 183.
    Pud A A, Shapoval G S, Kukhar V P, Mikulina O E, Gervits L L. Electrochemical reduction of some saturated and unsaturated perfluorocarbons. Electrochimica Acta, 1995, 40(9): 1157–1164CrossRefGoogle Scholar
  184. 184.
    Chen X D, Lemal D M. Functionalization of saturated fluorocarbons with and without light. Journal of Fluorine Chemistry, 2006, 127(9): 1158–1167CrossRefGoogle Scholar
  185. 185.
    Szajdzinska-Pietek E, Gebicki J L. Pulse radiolytic investigation of perfluorinated surfactants in aqueous solutions. Research on Chemical Intermediates, 2000, 26(9): 897–912CrossRefGoogle Scholar
  186. 186.
    Huang L, Dong W B, Hou H Q. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chemical Physics Letters, 2007, 436(1-3): 124–128CrossRefGoogle Scholar
  187. 187.
    Ono T, Fukaya H, Hayashi E, Saida H, Abe T, Henderson P B, Fernandez R E, Scherer K V. Persistent perfluoroalkyl radical investigations under reductive environment: Reaction with electron-donating reagents. Journal of Fluorine Chemistry, 1999, 97(1-2): 173–182CrossRefGoogle Scholar
  188. 188.
    Ochoa-Herrera V, Sierra-Alvarez R, Somogyi A, Jacobsen N E, Wysocki V H, Field J A. Reductive defluorination of perfluorooctane sulfonate. Environmental Science & Technology, 2008, 42 (9): 3260–3264CrossRefGoogle Scholar
  189. 189.
    Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 1996, 30(8): 2634–2640CrossRefGoogle Scholar
  190. 190.
    Roberts A L, Totten L A, Arnold WA, Burris D R, Campbell T J. Reductive elimination of chlorinated ethylenes by zero valent metals. Environmental Science & Technology, 1996, 30(8): 2654–2659CrossRefGoogle Scholar
  191. 191.
    Puls R W, Paul C J, Powell R M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Applied Geochemistry, 1999, 14(8): 989–1000CrossRefGoogle Scholar
  192. 192.
    Tratnyek P G, Johnson T L, Scherer M M, Eykholt G R. Remediating ground water with zero-valent metals: Chemical considerations in barrier design. Ground Water Monitoring and Remediation, 1997, 17(4): 108–114CrossRefGoogle Scholar
  193. 193.
    Cantrell K J, Kaplan D I, Wietsma T W. Zero-Valent Iron for the in-situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 1995, 42(2): 201–212CrossRefGoogle Scholar
  194. 194.
    Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 2005, 39(5): 1338–1345CrossRefGoogle Scholar
  195. 195.
    Elliott D W, Zhang W X. Field assessment of nanoscale biometallic particles for groundwater treatment. Environmental Science & Technology, 2001, 35(24): 4922–4926CrossRefGoogle Scholar
  196. 196.
    Kim Y H, Carraway E R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science & Technology, 2000, 34(10): 2014–2017CrossRefGoogle Scholar
  197. 197.
    Zhang W X, Wang C B, Lien H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 1998, 40(4): 387–395CrossRefGoogle Scholar
  198. 198.
    Bransfield S J, Cwiertny D M, Livi K, Fairbrother D H. Influence of transition metal additives and temperature on the rate of organohalide reduction by granular iron: Implications for reaction mechanisms. Applied Catalysis B: Environmental, 2007, 76(3–4): 348–356CrossRefGoogle Scholar
  199. 199.
    Cwiertny DM, Bransfield S J, Livi K J T, Fairbrother D H, Roberts A L. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environmental Science & Technology, 2006, 40(21): 6837–6843CrossRefGoogle Scholar
  200. 200.
    Marshall W D, Kubatova A, Lagadec A J M, Miller D J, Hawthorne S B. Zero-valent metal accelerators for the dechlorination of pentachlorophenol (PCP) in subcritical water. Green Chemistry, 2002, 4(1): 17–23CrossRefGoogle Scholar
  201. 201.
    Hart E J, Anbar M. The Hydrated Electron. New York: John Wiley & Sons, Inc., 1970Google Scholar
  202. 202.
    Mezyk S P, Helgeson T, Cole S K, Cooper W J, Fox RV, Gardinali P R, Mincher B J. Free radical chemistry of disinfectionbyproducts. 1. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water. Journal of Physical Chemistry A, 2006, 110(6): 2176–2180Google Scholar
  203. 203.
    Milosavljevic B H, LaVerne J A, Pimblott S M. Rate coefficient measurements of hydrated electrons and hydroxyl radicals with chlorinated ethanes in aqueous solutions. Journal of Physical Chemistry A, 2005, 109(34): 7751–7756CrossRefGoogle Scholar
  204. 204.
    Johnson H D, Cooper W J, Mezyk S P, Bartels D M. Free radical reactions of monochloramine and hydroxylamine in aqueous solution. Radiation Physics and Chemistry, 2002, 65(4-5): 317–326CrossRefGoogle Scholar
  205. 205.
    Nickelsen M G, Cooper W J, Secker D A, Rosocha L A, Kurucz C N, Waite T D. Kinetic modeling and simulation of PCE and TCE removal in aqueous solutions by electron-beam irradiation. Radiation Physics and Chemistry, 2002, 65(4-5): 579–587CrossRefGoogle Scholar
  206. 206.
    Rahn R O, Stephan M I, Bolton J R, Goren E, Shaw P S, Lykke K R. Quantum yield of the iodide-iodate chemical actinometer: Dependence on wavelength and concentration. Photochemistry and Photobiology, 2003, 78(2): 146–152CrossRefGoogle Scholar
  207. 207.
    Anbar M, Hart E J. The reaction of haloaliphatic compounds with hydrated electrons. The Journal of Physical Chemistry, 1965, 69 (1): 271–274CrossRefGoogle Scholar
  208. 208.
    Czapski G, Schwarz H A. The nature of reducing radical in water radiolysis. The Journal of Physical Chemistry, 1962, 66(3): 471–474CrossRefGoogle Scholar
  209. 209.
    Matheson M S, Mulac W A, Rabani J. Formation of hydrated electron in flash photolysis of aqueous solutions. Journal of Physical Chemistry, 1963, 67(12): 2613–2617CrossRefGoogle Scholar
  210. 210.
    Hart, E. J., Boag, J.W., Absorption Spectrum of Hydrated Electron in Water and in Aqueous Solutions. Journal of the American Chemical Society, 1962, 84(21): 4090–4095CrossRefGoogle Scholar
  211. 211.
    Thomas-Smith T E, Blough N V. Photoproduction of hydrated electron from constituents of natural waters. Environmental Science & Technology, 2001, 35(13): 2721–2726CrossRefGoogle Scholar
  212. 212.
    Hoigne J, Faust B C, Haag W R, Scully F E, Zepp R G. Aquatic humic substances as sources and sinks of photochemically produced transient reactants. ACS Symposium Series, 1989, 219: 363–381Google Scholar
  213. 213.
    Zepp R G, Braun A M, Hoigne J, Leenheer J A. Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environmental Science & Technology, 1987, 21(5): 485–490CrossRefGoogle Scholar
  214. 214.
    Park H, Vecitis C D, Cheng J, Mader B T, Hoffmann M R. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroupand chain length. Journal of Physical Chemistry A, 2009, 113(4): 690–696CrossRefGoogle Scholar
  215. 215.
    Lian R, Oulianov D A, Crowell R A, Shkrob I A, Chen X Y, Bradforth S E. Electron photodetachment from aqueous anions. 3. Dynamics of geminate pairs derived from photoexcitation of mono-vs polyatomic anions. Journal of Physical Chemistry A, 2006, 110(29): 9071–9078Google Scholar
  216. 216.
    Nishiwaki T, Usui M, Anda K, Hida M. Dechlorination of polychlorinated biphenyls by UV-irradiation. 5. Reaction of 2,4,6-trichlorobiphenyl in neutral and alkaline alcoholic solution. Bulletin of the Chemical Society of Japan, 1979, 52(3): 821–825Google Scholar
  217. 217.
    Yao Y, Kakimoto K, Ogawa H I, Kato Y, Hanada Y, Shinohara R, Yoshino E. Reductive dechlorination of non-ortho substituted polychlorinated biphenyls by ultraviolet irradiation in alkaline 2-propanol. Chemosphere, 1997, 35(12): 2891–2897CrossRefGoogle Scholar
  218. 218.
    Hawari J, Demeter A, Samson R. Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: Dechlorination of aroclor 1254 in soil samples by solar-radiation. Environmental Science & Technology, 1992, 26(10): 2022–2027CrossRefGoogle Scholar
  219. 219.
    Schwarz H A, Dodson RW. Reduction potentials of Co2- and the alcohol radicals. Journal of Physical Chemistry, 1989, 93(1): 409–414CrossRefGoogle Scholar
  220. 220.
    Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O. Artificial enzymes. Chemical Reviews, 1996, 96(2): 721–758CrossRefGoogle Scholar
  221. 221.
    Gantzer C J, Wackett L P. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environmental Science & Technology, 1991, 25(4): 715–722CrossRefGoogle Scholar
  222. 222.
    Costentin C, Robert M, Saveant J M. Does catalysis of reductive dechlorination of tetra- and trichloroethylenes by vitamin B12 and corrinoid-based dehalogenases follow an electron transfer mechanism? Journal of the American Chemical Society, 2005, 127(35): 12154–12155CrossRefGoogle Scholar
  223. 223.
    Glod G, Angst W, Holliger C, Schwarzenbach R P. Corrinoidmediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Reaction kinetics and reaction mechanisms. Environmental Science & Technology, 1997, 31(1): 253–260CrossRefGoogle Scholar
  224. 224.
    Wood J M, Kennedy F S, Wolfe R S. Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry, 1968, 7(5): 1707–1713CrossRefGoogle Scholar
  225. 225.
    Lexa D, Saveant J M. Electrochemistry of vitamin-B12. 3. Oneelectron intermediates in reduction of methylcobalamin and methylcobinamide. Journal of the American Chemical Society, 1978, 100(10): 3220–3222Google Scholar
  226. 226.
    Lexa D, Saveant J M, Zickler J. Electrochemistry of vitamin-B12. 2. Redox and acid-base equilibria in B12a/B12r system. Journal of the American Chemical Society, 1977, 99(8): 2786–2790Google Scholar
  227. 227.
    Zehnder A J B, Wuhrmann K. Titanium(Iii) citrate as a nontoxic oxidation-reduction buffering system for culture of obligate anaerobes. Science, 1976, 194(4270): 1165–1166CrossRefGoogle Scholar
  228. 228.
    Shey J, van der Donk W A. Mechanistic studies on the vitamin B-12-catalyzed dechlorination of chlorinated alkenes. Journal of the American Chemical Society, 2000, 122(49): 12403–12404CrossRefGoogle Scholar
  229. 229.
    Schrauze Gn, Deutsch E, Windgass Rj. The nucleophilicity of vitamin B12s. Journal of the American Chemical Society, 1968, 90 (9): 2441–2442CrossRefGoogle Scholar
  230. 230.
    Krusic P J, Marchione A A, Roe D C. Gas-phase NMR studies of the thermolysis of perfluorooctanoic acid. Journal of Fluorine Chemistry, 2005, 126(11–12): 1510–1516CrossRefGoogle Scholar
  231. 231.
    Ainagos A F. Mechanism and kinetics of pyrolysis of perfluorohexane. AF AINAGOS Kinetics and catalysis, 1991, 32(4): 720–725Google Scholar
  232. 232.
    Hynes R G, Mackie J C, Masri A R. Shock-tube study of the pyrolysis of the halon replacement molecule CF3CHFCF3. Journal of Physical Chemistry A, 1999, 103(1): 54–61CrossRefGoogle Scholar
  233. 233.
    Atkinson B, McKeagan D. The thermal decomposition of perfluorocyclopropane. Chemical Communications, 1966, 7: 189–190Google Scholar
  234. 234.
    Bauer S H, Hou K C, Resler E L. Single-pulse shock-tube studies of pyrolysis of fluorocarbons and of oxidation of perfluoroethylene. Physics of Fluids, 1969, 12(5): I-125–I-132CrossRefGoogle Scholar
  235. 235.
    Blake P G, Tomlinso A D. Thermal decomposition of fluoroaceticacid. Journal of the Chemical Society B: Physical Organic, 1971, 8: 1596–1597CrossRefGoogle Scholar
  236. 236.
    Brown C E, Smith D R. The infrared multiphoton dissociation of hexafluoroethane. Canadian Journal of Chemistry: Revue Canadienne De Chimie, 1988, 66(4): 609–614CrossRefGoogle Scholar
  237. 237.
    Chowdhury P K. IR multiphoton dissociation dynamics of octafluorocyclopentene: Time-resolved observation of concerted products:CF2 and hexafluorobutadiene. The Journal of Physical Chemistry, 1995, 99(32): 12084–12089CrossRefGoogle Scholar
  238. 238.
    Longfellow C A, Smoliar L A, Lee Y T, Lee Y R, Yeh C Y, Lin S M. Competing pathways in the infrared multiphoton dissociation of hexafluoropropene. Journal of Physical Chemistry A, 1997, 101 (4) 338–344CrossRefGoogle Scholar
  239. 239.
    Matula R A. Thermal decomposition of perfluoropropene. The Journal of Physical Chemistry, 1968, 72(8): 3054–3056CrossRefGoogle Scholar
  240. 240.
    Millward G E, Tschuiko E. Kinetic analysis of shock-wave decomposition of 1,1,1,2-tetrafluoroethane. The Journal of Physical Chemistry, 1972, 76(3): 292–298CrossRefGoogle Scholar
  241. 241.
    Tschuiko E. RRKM theory calculation of unimolecular decomposition of hexafluoroethane: Thermal activation. The Journal of Chemical Physics, 1968, 49(7): 3115–3121CrossRefGoogle Scholar
  242. 242.
    Lee M C, Choi W. Development of thermochemical destruction method of perfluorocarbons (PFCs). Journal of Industrial and Engineering Chemistry, 2004, 10(1): 107–114Google Scholar
  243. 243.
    Burgess D R, Zachariah M R, Tsang W, Westmoreland P R. Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Progress in Energy and Combustion Science, 1995, 21(6): 453–529CrossRefGoogle Scholar
  244. 244.
    Lines D, Sutcliffe H. Preparation and properties of some salts of perfluorooctanoic acid. Journal of Fluorine Chemistry, 1984, 25(4): 505–512CrossRefGoogle Scholar
  245. 245.
    Lazerte J D, Hals L J, Reid T S, Smith G H. Pyrolyses of the salts of the perfluoro carboxylic acids. Journal of the American Chemical Society, 1953, 75(18): 4525–4528CrossRefGoogle Scholar
  246. 246.
    Glöckner V, Lunkwitz K, Prescher D. Zur chemischen und thermischen Stabilität von Fluortensiden. Tenside Surfactants Detergents, 1989, 26(6): 376–380 (in German)Google Scholar
  247. 247.
    Krusic P J, Roe D C. Gas-phase NMR technique for studying the thermolysis of materials: Thermal decomposition of ammonium perfluorooctanoate. Analytical Chemistry, 2004, 76(13): 3800–3803CrossRefGoogle Scholar
  248. 248.
    Office of Pollution Prevention & Toxics, Docket AR226-1366, ed. Laboratory-Scale Thermal Degradation of Perfluorooctanyl Sulfonate and Related Substances. Washington DC: US Environmental Protection Agency, 2003, 13Google Scholar
  249. 249.
    Ravishankara A R, Solomon S, Turnipseed A A, Warren R F. Atmospheric lifetimes of long-lived halogenated species. Science, 1993, 259(5092): 194–199CrossRefGoogle Scholar
  250. 250.
    Office of Pollution Prevention & Toxics, Docket AR226-1367, ed. Final Report: Laboratory-Scale Thermal Degradation of Perfluoro-Octanyl Sulfonate and Related Substances. Washington DC: US Environmental Protection Agency, 2003, 142Google Scholar
  251. 251.
    Leighton T G. The Acoustic Bubble. London: Academic Press, 1994, 316–335Google Scholar
  252. 252.
    Mason T J, Lorimer J P. Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry. New York: Halsted Press, 1988Google Scholar
  253. 253.
    Suslick K S. Ultrasound: It’s Chemical, Physical, and Biological Effects. New York: VCH Publishers, 1988Google Scholar
  254. 254.
    Destaillats H, Hung H M, Hoffmann M R. Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiation. Environmental Science & Technology, 2000, 34(2): 311–317CrossRefGoogle Scholar
  255. 255.
    Kotronarou A, Mills G, Hoffmann M R. Ultrasonic irradiation of para-nitrophenol in aqueous solution. Journal of Physical Chemistry, 1991, 95(9): 3630–3638CrossRefGoogle Scholar
  256. 256.
    Vinodgopal K, Ashokkumar M, Grieser F. Sonochemical degradation of a polydisperse nonylphenol ethoxylate in aqueous solution. Journal of Physical Chemistry B, 2001, 105(16): 3338–3342CrossRefGoogle Scholar
  257. 257.
    Manousaki E, Psillakis E, Kalogerakis N, Mantzavinos D. Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Research, 2004, 38(17): 3751–3759CrossRefGoogle Scholar
  258. 258.
    Petrier C, Lamy M F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N. Sonochemical degradation of phenol in dilute aqueous solutions: Comparison of the reaction-rates at 20-Khz and 487-Khz. Journal of Physical Chemistry, 1994, 98(41): 10514–10520CrossRefGoogle Scholar
  259. 259.
    Hung H M, Hoffmann M R. Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons: Frequency effects. Journal of Physical Chemistry A, 1999, 103(15): 2734–2739CrossRefGoogle Scholar
  260. 260.
    Jennings B H, Townsend S N. Sonochemical reactions of carbon tetrachloride and chloroform in aqueous suspension in an inert atmosphere. Journal of Physical Chemistry, 1961, 65(9): 1574–1579CrossRefGoogle Scholar
  261. 261.
    Petrier C, David B, Laguian S. Ultrasonic degradation at 20 khz and 500 khz of atrazine and pentachlorophenol in aqueous solution: Preliminary results. Chemosphere, 1996, 32(9): 1709–1718CrossRefGoogle Scholar
  262. 262.
    Suslick K S, Hammerton D A, Cline R E. The sonochemical hotspot. Journal of the American Chemical Society, 1986, 108(18): 5641–5642CrossRefGoogle Scholar
  263. 263.
    Price G J, Ashokkumar M, Hodnett M, Zequiri B, Grieser F. Acoustic emission from cavitating solutions: Implications for the mechanisms of sonochemical reactions. Journal of Physical Chemistry B, 2005, 109(38): 17799–17801CrossRefGoogle Scholar
  264. 264.
    Sunartio D, Ashokkumar M, Grieser F. Study of the coalescence of acoustic bubbles as a function of frequency, power, and watersoluble additives. Journal of the American Chemical Society, 2007, 129(18): 6031–6036CrossRefGoogle Scholar
  265. 265.
    Brennen C E. Cavitation and Bubble Dynamics. New York: Oxford University Press, 1995Google Scholar
  266. 266.
    Didenko Y T, McNamara W B, Suslick K S. Hot spot conditions during cavitation in water. Journal of the American Chemical Society, 1999, 121(24): 5817–5818CrossRefGoogle Scholar
  267. 267.
    Ciawi E, Rae J, Ashokkumar M, Grieser F. Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. Journal of Physical Chemistry B, 2006, 110(27): 13656–13660CrossRefGoogle Scholar
  268. 268.
    Ashokkumar M, Grieser F. A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. Journal of the American Chemical Society, 2005, 127 (15): 5326–5327CrossRefGoogle Scholar
  269. 269.
    Eddingsaas N C, Suslick K S. Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. Journal of the American Chemical Society, 2007, 129(13): 3838–3839CrossRefGoogle Scholar
  270. 270.
    Sostaric J Z, Riesz P. Sonochemistry of surfactants in aqueous solutions: An EPR spin-trapping study. Journal of the American Chemical Society, 2001, 123(44): 11010–11019CrossRefGoogle Scholar
  271. 271.
    Kato S, Makide Y, Tominaga T, Takeuchi K. Infrared multiphoton dissociation of heptafluoropropane. Journal of Physical Chemistry, 1987, 91(16): 4278–4284CrossRefGoogle Scholar
  272. 272.
    Wilhelmi A R, Knopp P V. Wet air oxidation: An alternative to incineration. Chemical Engineering Progress, 1979, 75(8): 46–52Google Scholar
  273. 273.
    Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: A review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2): 143–160CrossRefGoogle Scholar
  274. 274.
    Chang M B, Chang J S. Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: A critical review. Industrial & Engineering Chemistry Research, 2006, 45(12): 4101–4109CrossRefGoogle Scholar
  275. 275.
    Destaillats H, Colussi A J, Joseph JM, Hoffmann MR. Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange. Journal of Physical Chemistry A, 2000, 104(39): 8930–8935CrossRefGoogle Scholar
  276. 276.
    Weavers L K, Malmstadt N, Hoffmann M R. Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation. Environmental Science & Technology, 2000, 34(7): 12801285CrossRefGoogle Scholar
  277. 277.
    Lesko T, Colussi A J, Hoffmann M R. Sonochemical decomposition of phenol: Evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environmental Science & Technology, 2006, 40(21): 6818–6823CrossRefGoogle Scholar
  278. 278.
    Weavers L K, Ling F H, Hoffmann M R. Aromatic compound degradation in water using a combination of sonolysis and ozonolysis. Environmental Science & Technology, 1998, 32(18): 2727–2733CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Chad D. Vecitis
    • 1
  • Hyunwoong Park
    • 1
  • Jie Cheng
    • 1
  • Brian T. Mader
    • 2
  • Michael R. Hoffmann
    • 1
  1. 1.W. M. Keck Laboratories, California Institute of TechnologyPasadenaUSA
  2. 2.3M Environmental LaboratoryMaplewoodUSA

Personalised recommendations