Journal of Central South University

, Volume 26, Issue 12, pp 3502–3515 | Cite as

Petrogenesis of Middle Triassic andesite in Sayaburi area, Laos: Constraints from whole-rock geochemistry, zircon U-Pb geochronology, and Sr-Nd isotopes

  • Yuan Ouyang (欧阳渊)
  • Hong Liu (刘洪)Email author
  • Fei Nie (聂飞)
  • Feng Cong (丛峰)
  • Jian-long Zhang (张建农)
  • Jing-hua Zhang (张景华)
  • Han-xiao Huang (黄瀚霄)
  • Shu-sheng Liu (刘书生)
  • Chuan-yang Lei (雷传扬)


Despite the presence of a large area of andesite in the Sayaburi Province of Laos, it has received very little attention. Based on a combination of detailed field investigations, geochronology and geochemical analysis, this study aims to explore the geochemical, Sr-Nd isotopic, and source rock characteristics, as well as the genesis and tectonic setting of the andesite in this region. In the Sayaburi Province, the andesite zircon U-Pb age is (241.2±1.2) Ma. The andesite rock is classified in the metaluminous-weak peraluminous calc-alkaline series. The light rare-earth elements (LREEs) are enriched and characterized by clear fractionation, whereas heavy rare-earth elements (HREEs) are relatively depleted and have no signs of fractionation. The average δEu is 0.96 with weak-or-no Eu anomalies. It is enriched in large ion lithophile elements such as Rb and K, while depleted in high field-strength elements such as Nb, Ta, P and Ti. For andesites in the Sayaburi Province, the (87Rb/86Sr)t value ranges in 0.702849–0.704687, the εNd(t) value is between 3.53 and 4.77, the tDM(t) value ranges in 633–835 Ma, and the tDM2(t) ranges in 625–724 Ma. The results based on the synthesis of petrology, geochemistry, and regional tectonic background studies show that 1) the andesitic magma source in the study area is an enriched mantle, which is modified by subduction zone fluids; 2) the geotectonic background environment of the andesite in Sayaburi area is the continental island arc environment and related to the tectonic evolution of Jinghong-Nan-Uttaradit back-arc basin, which reflects that the magmatic source is enriched with a mantle wedge component modified by a subduction zone fluid (or melt).

Key words

Laos Sayaburi area zircon U-Pb geochronology geochemistry 

老挝沙耶武里省中三叠世安山岩的成因与构造环境: 地球化学、锆石U−Pb 年代学和Sr−Nd 同位素的约束


老挝沙耶武里省分布有大面积安山岩,该地区地质工作程度极低。本文拟在对该地区安山岩详 细野外调查的基础上结合年代学、地球化学数据分析,探讨该套安山岩的地球化学特征、Sr−Nd 同位 素特征、源区特征、岩石成因及构造环境。老挝沙耶武里省安山岩锆石U−Pb 年龄为(241.2±1.2) Ma。 岩石属准铝质-弱过铝质钙碱性系列,LREE 富集,分馏明显;而HREE 相对亏损,分馏不明显,δEu 平均值为0.96,具有弱的Eu 异常或无Eu 异常,相对富集Rb、K 等大离子亲石元素,而Nb、Ta、P、 Ti 等高场强元素呈现低谷。安山岩的(87Rb/86Sr)t 值介于0.702849~0.704687,εNd(t)值介于3.533358~ 4.774175,tDM(t)值介于633~835 Ma,tDM2(t)值介于625~724 Ma。综合岩石学、地球化学和区域构造 背景,研究区安山岩的岩浆源区为遭受了俯冲带流体改造的富集地幔源区,形成的大地构造背景环境 为大陆岛弧环境,且与景洪-难河-程逸弧后洋盆构造演化相关。


老挝 安山岩 锆石U−Pb 年代学 地球化学 构造环境 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are very grateful to Dr CAO Hua-wen from Chengdu Center, China Geological Survey, and Dr. YU Maio from Central South University, China, for their great help in improving the manuscript.


  1. [1]
    KAMVONG T, KHIN Z, MEFFRE S, MAAS R, STEIN H, LAI C K. Adakites in the Truong Son and Loei Fold Belts, Thailand and Laos: Genesis and implications for geodynamics and metallogeny [J]. Gondwana Research, 2014, 26: 165–184. DOI: CrossRefGoogle Scholar
  2. [2]
    MANAKA T, ZAW K, MEFFRE S, VASCONCELOS P M, GOLDING, S D. The Ban Houayxai epithermal Au-Ag deposit in the Northern Lao PDR: Mineralization related to the Early Permian arc magmatism of the Truong Son Fold Belt [J]. Gondwana Research, 2014, 26: 185–197. DOI: CrossRefGoogle Scholar
  3. [3]
    KHIN Z, MEFFRE S, LAI C K, BURRETT C, SANTOSH M, GRAHAM I, MANAKA T, SALAM A, KAMVONG T, CROMIE P. Tectonics and metallogeny of mainland Southeast Asia—A review and contribution [J]. Gondwana Research, 2014, 26: 5–30. DOI: CrossRefGoogle Scholar
  4. [4]
    GAO Jian-hua, FAN Wen-yu, WANG Hong, WU Zhen-bo, LIU Shu-sheng, ZHU Hua-ping. Geochemical characteristics and petrogenesis of the basalts in Xaignabouri, Laos and their geological significance [J]. Acta Geologica Sinica, 2015, 89(9): 1696–1702.Google Scholar
  5. [5]
    WANG Y J, QIAN X, CAWOOD P A, LIU H C, FENG Q L, ZHAO G C, ZHANG Y H, HE H Y, XHANG P Z. Closure of the east paleotethyan ocean and amalgamation of the eastern cimmerian and southeast asia continental fragments [J]. Earth-science Reviews, 2018, 186: 195–230. DOI: CrossRefGoogle Scholar
  6. [6]
    WANG Y J, HE H Y, ZHANG Y Z, SRITHAI B, FENG Q L, CAWOOD P A, FAN W M. Origin of permian OIB-like basalts in NW thailand and implication on the paleotethyan ocean [J]. Lithos, 2017, 274: 93–105. DOI: CrossRefGoogle Scholar
  7. [7]
    QIAN X, WANG Y J, SRITHAI, B, FENG Q L, ZHANG Y Z, ZI J W, HE H Y. Geochronological and geochemical constraints on the intermediate-acid volcanic rocks along the Chiang Khong-Lampang-Tak igneous zone in NW Thailand and their tectonic implications [J]. Gondwana Research, 2017, 45: 87–99. DOI: CrossRefGoogle Scholar
  8. [8]
    ROBINSON R A, BREZINA C A, PARRISH R R, HORSTWOOD M S, OO N W, BIRD M I, THEIN M, WALTERS A S, OLIVER G J H, ZAW K. Large rivers and orogens: The evolution of the Yarlung Tsangpo-Irrawaddy system and the eastern Himalayan syntaxis [J]. Gondwana Research, 2014, 26(1): 112–121. DOI: CrossRefGoogle Scholar
  9. [9]
    LAI C K, MEFFRE S, CRAWFORD A J, ZAW K, XUE C D, HALPIN J A. The Western Ailaoshan Volcanic Belts and their SE Asia connection: A new tectonic model for the eastern indochina block [J]. Gondwana Research, 2014, 26(1): 52–74. DOI: CrossRefGoogle Scholar
  10. [10]
    LIU Shu-sheng, NIE Fei, WU Zhen-bo, FAN Wen-yu, GAO Jian-hua, YANG Yong-fei. Zircon U-Pb geochronology and geochemical characteristics of the diorites in the Sayabouliarea, NW Laos [J]. Geology and Exploration, 2018, 54(6): 1282–1291.Google Scholar
  11. [11]
    SHI M F, WU Z, LIU S S, PENG Z M, GUO L N, NIE F, XU S W. Geochronology and petrochemistry of volcanic rocks in the Xaignabouli Area, NW Laos [J]. Journal of Earth Science, 2019, 30(1): 37–51.CrossRefGoogle Scholar
  12. [12]
    WANG Hong, LIN Fang-cheng, LI Xing-zhen, SHI Mei-feng. The division of tectonic units and tectonic evolution in Laos and its adjacent regions[J]. Geology in China, 2015, 42(1): 71–84.Google Scholar
  13. [13]
    UENO K, HISADA K. The Nan-Uttaradit-Sa Kaeo Suture as a main Paleo-Tethyan Suture in Thailand: Is it real? [J]. Gondwana Research, 2001, 4: 804–806. DOI: CrossRefGoogle Scholar
  14. [14]
    UENO K, WANG Y, WANG X. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changning- Menglian Belt, West Yunnan, Southwest China: An overview [J]. The Island Arc, 2003, 12: 145–161. DOI: CrossRefGoogle Scholar
  15. [15]
    SONE M, METCALFE I. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny [J]. Comptes Rendus Geosciences, 2008, 340: 166–179. DOI: CrossRefGoogle Scholar
  16. [16]
    METCALFE I. Tectonic framework and Phanerozoic evolution of Sundaland [J]. Gondwana Research, 2001, 19: 3–21. DOI: CrossRefGoogle Scholar
  17. [17]
    INTASOPA S B. Petrology and geochronology of the volcanic rocks of the central Thailand volcanic belt, Unpublished PhD thesis [D]. Canada: University of New Brunswick Fredericton, 1993.Google Scholar
  18. [18]
    ZAW K, MEFFRE S, LAI C K, BURRETT C, SANTOSH M, GRAHAM I, MANAKA T, SALAM A, KAMVONG T, CROMIE P. Tectonics and metallogeny of mainland Southeast Asia-A review and contribution [J]. Gondwana Research, 2014, 26(1): 5–30. DOI: CrossRefGoogle Scholar
  19. [19]
    SALAM A, ZAW K, MEFFRE S, MCPHIE J, LAI C K. Geochemistry and geochronology of the Chatree epithermal gold-silver deposit: Implications for the tectonic setting of the Loei Fold Belt, central Thailand [J]. Gondwana Research, 2014, 26: 198–217. DOI: CrossRefGoogle Scholar
  20. [20]
    QIAN X, WANG Y J, FENG Q L, ZI J W, ZHANG Y Z, CHONGLAKMANI C P. Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand [J]. Lithos, 2016, 245–251: 418–431. DOI: CrossRefGoogle Scholar
  21. [21]
    WU G G, XIA B, LI W Q, WANG H, BU G M. Andesite of takezhale ophiolite complex in xinjiang: Geochemical characteristics and tectonic setting [J]. Geotectonica et Metallogenia, 2005, 29(2): 242–251.Google Scholar
  22. [22]
    LIU Hong, LI Guang-ming, HUANG Han-xiao, CAO Hua-wen, YUAN Qian, LI Ying-xu, OUYANG Yuan, LAN Shuang-shuang, LÜ Meng-hong, YAN Guo-qiang. Petrogenesis of Late Cretaceous Jiangla’angzong I-Type Granite in Central Lhasa Terrane, Tibet, China: Constraints from whole-rock geochemistry, zircon U-Pb geochronology, and Sr-Nd-Pb-Hf isotopes [J]. Acta Geologica Sinica (English Edition), 2018, 92(4): 1396–1414. DOI: CrossRefGoogle Scholar
  23. [23]
    MAITRE R W L. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks [M]. Blackwell, 1989.Google Scholar
  24. [24]
    PECCERILLO R, TAYLOR S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey [J]. Contributions to Mineralogy & Petrology, 1976, 58: 63–81.CrossRefGoogle Scholar
  25. [25]
    MIDDLEMOST E A K. Magmas and magmatic rocks [M]. London: Longman, 1985.Google Scholar
  26. [26]
    MCDONOUGH W F, SUN S S. The composition of the Earth [J]. Chemical Geology, 1995, 120: 223–253. DOI: CrossRefGoogle Scholar
  27. [27]
    SUN S S, MCHDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implication for mantle composition and processes [C]// SAUNDERS A D, NORRY M J. Magmatism in the Ocean Basins. London: Geological Society, 1989, 42 (2): 303–345. DOI: Google Scholar
  28. [28]
    DOSSO L, MURTHY V R. A Nd isotope study of the Kerguelen islands: Inferences on enriched oceanic mantle sources [J]. Earth & Planetary Science Letters, 1980, 48(2): 268–276. DOI: CrossRefGoogle Scholar
  29. [29]
    HUANG Yu, ZHU Di-cheng, ZHAO Zhi-dan, ZHANG Liang-liang, DON D, HU Zhao-chu, YUAN Hong-lin, MO Xuan-xue. Petrogenesis and implication of the andesites at ∼113 Ma in the Nagqu region in the northern Lhasa subterrane [J]. Acta Petrologica Sinica, 2012, 28(5): 1603–1614.Google Scholar
  30. [30]
    WU Hua-ying, ZHANG Lian-chang, ZHOU Xin-hua, CHEN Zhi-guang. Geochronology and Geochemical characteristics of Late Mesozoic andesites in the Central Da-Hinggan Mountains, and its genesis [J]. Acta Petrologica Sinica, 2008, 24(6): 1339–1352.Google Scholar
  31. [31]
    LI Xing-zhen, LIU Chao-ji, DING Jun. Correlation and connectionof the main suture zones in the Greater Mekong Subregion [J]. Sedimentary Geology and Tethyan Geology, 2008, 24(4): 1–12. DOI: Google Scholar
  32. [32]
    METCALFE I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys [J]. Journal of Asian Earth Sciences, 2013, 66: 1–33. DOI: CrossRefGoogle Scholar
  33. [33]
    LIU Shu-sheng, YANG Yong-fei, GUO Lin-nan, NIE Fei, PENG Zhi-ming, PAN Gui-tang. Tectonic characteristics and metallogeny in Southeast Asia [J]. Geology in China, 2018, 45(5): 548–611. DOI: Google Scholar
  34. [34]
    LIU Gui-chun, SUN Zai-bo, ZENG Wen-tao, FENG Qinglai, HUANG Liang, ZHANG Hu. The age of Wanhe ophiolitic mélange from Mengku area, Shuangjiang County, Western Yunnan Province, and its geological significance [J]. Acta Petrologica et Mineralogica, 2017, 36(2): 163–174.Google Scholar
  35. [35]
    DENG Jun, GE Liang-sheng, YANG Li-qiang. Tectonic dynamic system and compound orogeny: Additionally discussing the temporalspatial evolution of Sanjiang orogeny, Southwest China [J]. Acta Petrologica Sinica, 2013, 29(4): 1099–1114. DOI: Google Scholar
  36. [36]
    PEARCE T H, CANN J R. Tectonic setting of basic volcanic rocks determined using trace element analysis [J]. Earth and Planetary Science Letters, 1973, 19: 290–300. DOI: CrossRefGoogle Scholar
  37. [37]
    ROSSIGNOL C, BOURQUIN S, POUJOL M, HALLOTA E, DABARDA M P, NALPASA T. The volcaniclastic series from the luang prabang basin, Laos: A witness of a triassic magmatic arc? [J]. Journal of Asian Earth Sciences, 2016, 120: 159–183. DOI: CrossRefGoogle Scholar
  38. [38]
    MULLER D, GROVES D. Potassic igneous rocks and a ssociated gold-copper mineralization [M]. Berlin: Springer, 1997.Google Scholar
  39. [39]
    BAILEY J C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites [J]. Chemical Geology, 1981, 32: 139–154. DOI: CrossRefGoogle Scholar
  40. [40]
    PHAJUY B, PANJASAWATWONG Y, OSATAPORN P. Preliminary geochemical study of volcanic rocks in the Pang Mayao area, Phrao, Chiang Mai, northern Thailand: Tectonic setting of formation [J]. Journal of Asian Earth Sciences, 2005, 24(6): 765–776. DOI: CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuan Ouyang (欧阳渊)
    • 1
    • 2
  • Hong Liu (刘洪)
    • 2
    Email author
  • Fei Nie (聂飞)
    • 2
  • Feng Cong (丛峰)
    • 2
  • Jian-long Zhang (张建农)
    • 2
  • Jing-hua Zhang (张景华)
    • 2
  • Han-xiao Huang (黄瀚霄)
    • 2
  • Shu-sheng Liu (刘书生)
    • 2
  • Chuan-yang Lei (雷传扬)
    • 3
  1. 1.College of Earth SciencesChengdu University of TechnologyChengduChina
  2. 2.Chengdu CenterChina Geological SurveyChengduChina
  3. 3.Sichuan Geological SurveyChengduChina

Personalised recommendations