Advertisement

Journal of Central South University

, Volume 26, Issue 12, pp 3470–3487 | Cite as

Origin of Early Creceouscalc-alkaline granite, Taxkorgan: Implications for evolution of Tethys evolution in central Pamir

  • Rui-hua Li (李睿华)
  • Bo Peng (彭勃)Email author
  • Cai-sheng Zhao (赵财胜)
  • Miao Yu (于淼)
  • Lin-shan Song (宋林山)
  • Han Zhang (张晗)
Article
  • 3 Downloads

Abstract

The Pamir plateau may have been a westward continuation of Tibet plateau. Meanwhile, the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet, and the Central Pamir is the lateral equivalent of the Qiangtang Block. We present the first detailed LA-ICPMS zircon U-Pb chronology, major and trace element, and Lu-Hf isotope geochemistry of Taxkorgan two-mica monzogranite to illuminate the Tethys evolution in central Pamir. LA-ICPMS zircon U-Pb dating shows that two-mica monzogranite is emplaced in the Cretaceous (118 Ma). Its geochemical features are similar to S-type granite, with enrichment in LREEs and negative Ba, Sr, Zr and Ti anomalies. All the samples show negative zircon εHf(t) values ranging from −17.0 to −12.5 (mean −14.5), corresponding to crustal Hf model (TDM2) ages of 1906 to 2169 Ma. It is inferred that these granitoids are derived from partial melting of peliticmetasedimentary rocks analogous to the Paleoproterozoic Bulunkuole Group, predominantly with muscovite schists component. Based on the petrological and geochemical data presented above, together with the regional geology, this work provides new insights that Bangong-Nujiang Ocean closed in Early Cretaceous(120–114 Ma).

Key words

Tethys ocean Pamir plateau S-type granite Early Cretaceous tectono-magmatism Geochronology and petrogenesis 

塔什库尔干早白垩世钙碱性花岗岩成因:对中帕米尔特提斯洋演化的启示

摘要

帕米尔高原作为青藏高原的西延,Rushan-Pshart 缝合带对应青藏高原的班公湖-怒江缝合带, 中帕米尔地块即为羌塘板块的西向延伸部分。本文对塔什库尔干二云母二长花岗岩进行了详细的 LA-ICPMS 锆石U-Pb 年代学, 岩石地球化学和Lu-Hf 同位素分析,阐明了中帕米尔构造结的特提斯演 化。 LA-ICPMS 锆石U-Pb 定年结果显示,二云母二长花岗岩形成于早白垩世(118 Ma)。地球化学特 征与S 型花岗岩相似,富集LREEs,亏损Ba,Sr,Zr,Ti。锆石样品全部显示负的εHf(t),范围介于 −17.0∼−12.5(平均值−14.5),对应的二阶段模式年龄(TDM2)为1906∼2169 Ma。上述地球化学特征表明该 花岗岩形成于部分熔融的古元古代布伦阔勒群泥质变质碎屑岩,主要由白云母片岩组成。鉴于上述岩 石成因与地球化学数据,综合区域地质,本文进一步限定了中帕米尔地区班公湖-怒江洋闭合时代为 早白垩世(120∼114 Ma)。

关键词

特提斯洋 帕米尔高原 S 型花岗岩 早白垩世构造岩浆作用 年代学和岩石成因 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the project partners of Xikaimining company and Geological Research Academy of Xinjiang for their valuable support during the fieldwork.

References

  1. [1]
    BURTMAN V S. Peter Molnar, geological and geophysical evidence for deep subduction of continental crust beneath the pamir [J]. Special Paper of the Geological Society of America, 1993, 281: 248–251.Google Scholar
  2. [2]
    JIANG Yao-hui, JIANG Shao-yong, LING Hong-fei, ZHOU Xun-ruo, RUI Xing-jian, YANG Wan-zhi. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses [J]. Lithos, 2002, 63: 165–187.CrossRefGoogle Scholar
  3. [3]
    JIANG Yao-hui, LIAO Shi-yong, YANG Wan-zhi, SHEN Wei-zhou. An island arc origin of plagiogranites at Oytag, western Kunlun orogen, northwest China: SHRIMP zircon U-Pb chronology, elemental and Sr-Nd-Hf isotopic geochemistry and Paleozoic tectonic implications [J]. Lithos, 2008, 106: 323–335.CrossRefGoogle Scholar
  4. [4]
    MATTE P H, TAPPONNIER P, ARNAUD L B, AVOUAC J P, VIDAL P H, LIU Qing, PAN Yu-sheng, WANG Yi. Tectonics of western Tibet, between the tarim and the indus [J]. Earth and Planetary Science Letters, 1996, 142: 311–330.CrossRefGoogle Scholar
  5. [5]
    MATTERN F, SCHNEIDER W. Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China) [J]. Journal of Asian Earth Sciences, 2000, 18: 637–650.CrossRefGoogle Scholar
  6. [6]
    YIN An, HARRISON T M. Geologic evolution of the himalayan-tibetan orogen [J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211–280.CrossRefGoogle Scholar
  7. [7]
    YUAN Chao, SUN M, YANG Jing-sui, ZHOU Hui, ZHOU Mei-fu. Nb-depleted, continental rift-related Akaz metavolcanic rocks (West Kunlun): Implication for the rifting of the Tarim Craton from Gondwana [J]. Geological Society London Special Publications, 2004, 226: 131–143.CrossRefGoogle Scholar
  8. [8]
    YUAN Chao, SUN Min, ZHOU Mei-fu, XIAO Wen-jiao, ZHOU Hui, Geochemistry and petrogenesis of the Yishak Volcanic Sequence, Kudi ophiolite, West Kunlun (NW China): Implications for the magmatic evolution in a subduction zone environment [J]. Contributions to Mineralogy and Petrology, 2005, 150: 195–211.CrossRefGoogle Scholar
  9. [9]
    YUAN Chao, SUN Min, ZHOU Mei-fu, ZHOU Hui, XIAO Wen-jiao, LI Ji-liang. Absence of Archean basement in the South Kunlun Block: Nd-Sr-O isotopic evidence from granitoids [J]. Island Arc, 2003, 12: 13–21.CrossRefGoogle Scholar
  10. [10]
    ROBINSON A C, YIN An, CRAIG E M, HARRISON T M, ZHANG Shuan-hong, WANG Xiao-feng. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China [J]. Geological Society of America Bulletin, 2004, 116: 953.CrossRefGoogle Scholar
  11. [11]
    ZHANG Yu, NIU Yao-ling, HU Yan, LIU Jin-ju, YE Lei, KONG Juan-juan, DUAN Meng. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China - Evidence from geochronology and geochemistry of the Arkarz pluton [J]. Lithos, 2015, 245: 191–204.CrossRefGoogle Scholar
  12. [12]
    XIAO Wen-jiao, WINDLEY B F, CHEN Han-lin, ZHANG Guo-cheng, LI Liang-li. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan plateau [J]. Geology, 2002, 30: 295–298.CrossRefGoogle Scholar
  13. [13]
    XIAO Wen-jiao, WINDLEY B F, LIU Dun-yi, JIAN P, LIU C Z, YUAN Chao, SUN Min. Accretionary Tectonics of the Western Kunlun Orogen, China: A paleozoic-early mesozoic, long-lived active continental margin with implications for the growth of southern eurasia [J]. Journal of Geology, 2005, 113: 687–705.CrossRefGoogle Scholar
  14. [14]
    JIANG Yao-hui, JIA Ru-ya, LIU Zheng, LIAO Shi-yong, ZHAO Peng, ZHOU Qing. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys [J]. Lithos, 2013, s156–159: 13–30.CrossRefGoogle Scholar
  15. [15]
    ANGIOLINI L, ZANCHI A, ZANCHETTA S, NICORA A, GIOVANNI V. The Cimmerian geopuzzle: New data from south pamir [J]. Terra Nova, 2013, 25: 352–360.CrossRefGoogle Scholar
  16. [16]
    ANGIOLINI L, ZANCHI A, ZANCHETTA S, NICORA A, VUOLO I, BERRA F, HENDERSON C, MALASPINA N, RETTORI R, VACHARD D. From rift to drift in South Pamir (Tajikistan): Permian evolution of a Cimmerian terrane [J]. Journal of Asian Earth Sciences, 2015, 102: 146–169.CrossRefGoogle Scholar
  17. [17]
    DUCEA M N, LUTKOV V, MINAEV VLADISLAV T, HACKER B, RATSCHBACHER L, LUFFI P, SCHWAB M, GEHRELS G E, MCWILLIAMS M, VERVOORT J. Building the Pamirs: The view from the underside [J]. Geology, 2003, 31: 849–852.CrossRefGoogle Scholar
  18. [18]
    FAISAL S, LARSON K P, COTTLE J M, LAMMING J. Building the Hindu Kush: Monazite records of terrane accretion, plutonism and the evolution of the Himalaya-Karakoram-Tibet orogen [J]. Terra Nova, 2014, 26: 395–401.CrossRefGoogle Scholar
  19. [19]
    LACASSIN R, VALLI F, ARNAUD N, LELOUP P H, PAQUETTE J L, LI Hai-bing, TAPPONNIER P, CHEVALIER M L, GUILLOT S, MAHEO G. Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet [J]. Earth and Planetary Science Letters, 2004, 219: 255–269.CrossRefGoogle Scholar
  20. [20]
    ROBINSON A C. Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau [J]. Journal of Asian Earth Sciences, 2015, 102: 170–179.CrossRefGoogle Scholar
  21. [21]
    FAISAL S, LARSON K P, KING J, COTTLE J M. Rifting, subduction and collisional records from pluton petrogenesis and geochronology in the Hindu Kush, NW Pakistan [J]. Gondwana Research, 2015, 35: 286–304.CrossRefGoogle Scholar
  22. [22]
    SCHWAB M, RATSCHBACHER L, SIEBEL W, MCWILLIAMS M, MINAEV V, LUTKOV V, CHEN Fo-kun, STANEK K, NELSON B, FRISCH W. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet [J]. Tectonics, 2004, 23: TC4002.CrossRefGoogle Scholar
  23. [23]
    ROBINSON A C, YIN An, MANNING C E, HARRISON T M, ZHANG Shuan-hong, WANG Xiao-feng. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen [J]. Geological Society of America Bulletin, 2007, 119: 882–896.CrossRefGoogle Scholar
  24. [24]
    VALLI F, ARNAUD N, LELOUP P H, SOBEL E R, MAHÉO G, LACASSIN R, GUILLOT S, LI Hai-bing, TAPPONNIER P, XU Zhi-qin, VALLI F. Twenty million years of continuous deformation along the Karakorum fault, western Tibet [J]. A thermochronological analysis. Tectonics 26, TC4004, Tectonics, 2007, 26: 3672–3672.Google Scholar
  25. [25]
    VALLI F, LELOUP P H, PAQUETTE J L, ARNAUD N, LI Hai-bing, TAPPONNIER P, LACASSIN R, GUILLOT S, LIU Dun-yi, DELOULE ETIENNE. New U-Th/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum fault [J]. Tectonics, 2008, 27: 97–112.CrossRefGoogle Scholar
  26. [26]
    COWGILL E. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China [J]. Geological Society of America Bulletin, 2010, 122: 145–161.CrossRefGoogle Scholar
  27. [27]
    COULON C, MALUSKI H, BOLLINGER C, WANG S. Mesozoic and cenozoic volcanic rocks from central and southern Tibet: 39 Ar- 40 Ar dating, petrological characteristics and geodynamical significance [J]. Earth and Planetary Science Letters, 1986, 79: 281–302.CrossRefGoogle Scholar
  28. [28]
    QIANG Ji-wei, WU Fu-yuan, CHUNG Sun-lin, LI Jin-xiang, LIU Chuan-zhou. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet [J]. Chemical Geology, 2009, 262: 229–245.CrossRefGoogle Scholar
  29. [29]
    QI Jiang-zi, WANG Qiang, LI Zheng-xiang, WYMAN D A, TANG Gong-jian, JIA Xiao-hui, YANG Yue-heng. Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet): Slab melting and implications for Cu-Au mineralization [J]. Journal of Asian Earth Sciences, 2012, 53: 67–81.CrossRefGoogle Scholar
  30. [30]
    LI Shi-min, ZHU Di-cheng, WANG Qing, ZHAO Zhi-dan, SUI Qing-lin, LIU Sheng-ao, LIU Dong, MO Xuan-xue, Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet [J]. Lithos, 2014, 205: 284–297.CrossRefGoogle Scholar
  31. [31]
    LIU Yi-ming, WANG Ming, LI Cai, XIE Chao-ming, CHEN Hong-qi, LI Yan-bo, FAN Jian-jun, LI Xing-kui, XU Wei, SUN Zhen-ming. Cretaceous structures in the Duolong region of central Tibet: Evidence for an accretionary wedge and closure of the Bangong-Nujiang Neo-Tethys Ocean [J]. Gondwana Research, 2017, 48: 110–123.CrossRefGoogle Scholar
  32. [32]
    ZHANG Ze-ming, SHEN Kun, SANTOSH M, DONG Xin. High density carbonic fluids in a slab window: Evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet [J]. Journal of Asian Earth Sciences, 2011, 42: 515–524.CrossRefGoogle Scholar
  33. [33]
    ZHU Di-cheng, ZHAO Zhi-dan, NIU Yao-ling, MO Xuan-xue, CHUNG Sun-lin, HOU Zeng-qian, WANG Li-quan, WU Fu-yuan. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth [J]. Earth and Planetary Science Letters, 2011, 301: 241–255.CrossRefGoogle Scholar
  34. [34]
    KAPP P, DECELLES P G, GEHRELS G E, HEIZLER M, DING L. Geological records of the Cretaceous Lhasa-Qiangtang and Indo-Asian collisions in the Nima basin area, central Tibet [J]. Geological Society of America Bulletin, 2007, 119: 917–932.CrossRefGoogle Scholar
  35. [35]
    KAPP P, MURPHY M A, YIN An, HARRISON T M, DING Lin, GUO Jing-hu. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet [J]. Tectonics, 2003, 22: 253–253.Google Scholar
  36. [36]
    LI Cai. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys [J]. International Geology Review, 2014, 56: 1504–1520.CrossRefGoogle Scholar
  37. [37]
    ZHANG Kai-jun, XIA Bin, ZHANG Yu-xiu, LIU Wei-liang, ZENG Lu, LI Jian-feng, LI Feng-xu. Central Tibetan Meso-Tethyan oceanic plateau [J]. Lithos, 2014, s210–211: 278–288.CrossRefGoogle Scholar
  38. [38]
    FAN Jian-jun, LI Cai, XIE Chao-ming, WANG Ming, CHEN Jing-wen. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean [J]. Lithos, 2015, 227: 148–160.CrossRefGoogle Scholar
  39. [39]
    LI Ya-lin, HE Juan, WANG Cheng-shan, HAN Zhong-peng, MA Peng-fei, XU Ming, DU Kai-yuan. Cretaceous volcanic rocks in south Qiangtang Terrane: Products of northward subduction of the Bangong-Nujiang Ocean? [J]. Journal of Asian Earth Sciences, 2015, 104: 69–83.CrossRefGoogle Scholar
  40. [40]
    WANG Qing, ZHU Di-cheng, ZHAO Zhi-dan, LIU Sheng-ao, CHUNG Sun-lin, LI Shi-min, LIU Dong, DAI Jin-gen, WANG Li-quan, MO Xuan-xue. Origin of the ca. 90Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone [J]. Lithos, 2014, s198–199: 24–37.CrossRefGoogle Scholar
  41. [41]
    WANG Yu, ZHANG Xue-min, WANG Er-chi, ZHANG Jin-feng, LI Qi, SUN Gui-hua. 40Ar/39Ar thermochronological evidence for formation and Mesozoic evolution of the northern-central segment of the Altyn Tagh fault system in the northern Tibetan Plateau [J]. Geological Society of America Bulletin, 2005, 117: 1336.CrossRefGoogle Scholar
  42. [42]
    ZHANG Kai-jun, ZHANG Yu-xiu, TANG Xian-chun, XIA Bin. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision [J]. Earth-Science Reviews, 2012, 114: 236–249.CrossRefGoogle Scholar
  43. [43]
    ZHU Di-cheng, LI Shi-min, CAWOOD P A, WANG Qing, ZHAO Zhi-dan, LIU Sheng-ao, WANG Li-quan. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction [J]. Lithos, 2015, 245: 7–17.CrossRefGoogle Scholar
  44. [44]
    ROBINSON A C. Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen [J]. Earth and Planetary Science Letters, 2009, 279: 123–130.CrossRefGoogle Scholar
  45. [45]
    SOBEL E R, CHEN Jie, SCHOENBOHM L M, THIEDE R, STOCKLI D F, SUDO M, STRECKER M R. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen [J]. Earth and Planetary Science Letters, 2013, 363: 204–218.CrossRefGoogle Scholar
  46. [46]
    YANG Yong-tai, GUO Zhi-xin, LUO Yan-jun. Middle-Late Jurassic tectonostratigraphic evolution of Central Asia, implications for the collision of the Karakoram-Lhasa Block with Asia [J]. Earth-Science Reviews, 2017, 166: 83–110.CrossRefGoogle Scholar
  47. [47]
    ROBINSON A C, DUCEA M, LAPEN T J. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir [J]. Tectonics, 2012, 31: TC2016.CrossRefGoogle Scholar
  48. [48]
    BURTMAN V S, Tien Shan, Pamir, and Tibet: History and geodynamics of phanerozoic oceanic basins [J]. Geotectonics, 2010, 44: 388–404.CrossRefGoogle Scholar
  49. [49]
    WANG Chao, WANG Yong-he, LIU Liang, HE Shi-ping, LI Rong-she, LI Meng, YANG Wen-qiang, CAO Yu-ting, MEERT J G, SHI Chao. The Paleoproterozoic magmatic-metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China [J]. Precambrian Research, 2014, 254: 210–225.CrossRefGoogle Scholar
  50. [50]
    WANG Chao, LIU Liang, WANG Yong-he, HE Shi-ping, LI Rong-she, LI Meng, YANG Wen-qiang, CAO Yu-ting, COLLINS A S, SHI Chao. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China [J]. Precambrian Research, 2015, 257: 65–82.CrossRefGoogle Scholar
  51. [51]
    KANG Lei, XIAO Pei-xi, GAO Xiao-feng, XI Ren-gang, YANG Zai-chao, Neopaleozoic and Mesozoic granitoid magmatism and tectonic evolution of the western West Kunlun Mountains [J]. Geology in China, 2015, 42: 533–552. (in Chinese)Google Scholar
  52. [52]
    LI Wei, DONG Yun-peng, GUO An-lin, LIU Xiao-ming, ZHOU Ding-wu. Chronology and tectonic significance of Cenozoic faults in the Liupanshan Arcuate Tectonic Belt at the northeastern margin of the Qinghai-Tibet Plateau [J]. Journal of Asian Earth Sciences, 2013, 73: 103–113.CrossRefGoogle Scholar
  53. [53]
    WANG Chao, LIU Liang, FAWNA K, YANG Wen-qiang, CAO Yu-ting, HE Shi-ping, ZHU Xiao-hui, LIANG Wen-tian. Origins of Early Mesozoic granitoids and their enclaves from West Kunlun, NW China: implications for evolving magmatism related to closure of the Paleo-Tethys ocean [J]. International Journal of Earth Sciences, 2016, 105: 1–24.CrossRefGoogle Scholar
  54. [54]
    MENG Yuan-ku, XIONG Fa-hui, XU Zhi-qin, MA Xu-xuan. Petrogenesis of Late Cretaceous mafic enclaves and their host granites in the Nyemo region of southern Tibet: Implications for the tectonic-magmatic evolution of the Central Gangdese Belt [J]. Journal of Asian Earth Sciences, 2019, 176: 27–41.CrossRefGoogle Scholar
  55. [55]
    MENG Yuan-ku, XU Zhi-qin, GAO Cun-shan, XU Yang, LI Ri-hui. The identification of the Eocene magmatism and tectonic significance in the middle Gangdese magmatic belt, southern Tibet [J]. Acta Petrologica Sinica, 2018. (in Chinese).Google Scholar
  56. [56]
    LI Rui-hua, OUYANG He-gen, MAO Jing-wen, ZHU Yong-feng. Geology, geochronology, and geochemistry of the siruyidie’er prospect, Taxkorgan: A possible Miocene porphyry Mo±Cu deposit in the Central Pamir [J]. Ore Geology Reviews, 2019, 105: 572–589.CrossRefGoogle Scholar
  57. [57]
    LI Rui-hua, OUYANG He-gen, ZHAO Cai-sheng, SONG Lin-shan, XU Han-liang. Geological characteristics and mineralogenetic epoch of the Siruyidie’er Copper Polymetallic Deposit, South Xinjiang [J]. Acta Geologica Sinica, 2018, 92(7): 1447–1457. (in Chinese)Google Scholar
  58. [58]
    LIU Yong-sheng, GAO Shan, HU Zhao-chu, GAO Chang-gui, ZONG Ke-qing, WANG Dong-bing. Continental and oceanic crust recycling-induced melt-peridotite Interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths [J]. Journal of Petrology, 2010, 51: 392–399.CrossRefGoogle Scholar
  59. [59]
    LIU Yong-sheng, HU Zhao-chu, GAO Shan, Günther Detlef, XU Juan, GAO Chang-gui, CHEN Hai-hong. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257: 34–43.CrossRefGoogle Scholar
  60. [60]
    LIU Yong-sheng, HU Zhao-chu, ZONG Ke-qing, GAO Chang-qui, GAO Shan, XU Juan, CHEN Hai-hong. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS [J]. Chinese Science Bulletin, 2010, 55: 1535–1546.CrossRefGoogle Scholar
  61. [61]
    WU Fu-yuan, YANG Yue-heng, XIE Lie-wen, YANG Jin-hui, XU Ping. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology [J]. Chemical Geology, 2006, 234: 105–126.CrossRefGoogle Scholar
  62. [62]
    YUAN Hong-lin, Gao Shan, DAI Meng-ning, ZONG Chun-lei, GÜNTHER D, FONTAINE G H, LIU Xiao-ming, DIWU Chun-rong. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS [J]. Chemical Geology, 2008, 247: 100–118.CrossRefGoogle Scholar
  63. [63]
    COX K G, BELL J D, PANKHURST R J. The Interpretation of igneous rocks [M]. Dordrecht, Netherlands: Springer, 1979.CrossRefGoogle Scholar
  64. [64]
    MIYASHIRO A. Nature of alkalic volcanic rock series [J]. Contributions to Mineralogy and Petrology, 1978, 66: 91–104.CrossRefGoogle Scholar
  65. [65]
    RICKWOOD P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 1989, 22: 247–263.CrossRefGoogle Scholar
  66. [66]
    MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids [J]. Geological society of America Bulletin, 1989, 101: 635–643.CrossRefGoogle Scholar
  67. [67]
    BOYNTON W V. Chapter 3-Cosmochemistry of the Rare Earth Elements: Meteorite studies [M]. Developments in Geochemistry, 1984, 2: 63–114.CrossRefGoogle Scholar
  68. [68]
    SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society London Special Publications, 1989, 42: 313–345.CrossRefGoogle Scholar
  69. [69]
    LIU Hong, ZHANG Hui, LI Guang-ming, HUANG Han-xiao, XIAO Wan-feng, YOU Qin, MA Dong-fang, ZHANG Hai, ZHANG Hong. Petrogenesis of the early cretaceous qingcaoshan strongly peraluminous s-type granitic pluton, southern qiangtang, northern tibet: Constraints from whole-rock geochemistry and zircon U-Pb Geochronology [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 848–860. (in Chinese with English Abstract)Google Scholar
  70. [70]
    JIANG Yao-hui, LIU Zheng, JIA Ru-ya, LIAO Shi-yong, ZHAO Peng, ZHOU Qing. Origin of Early Cretaceous high-K calc-alkaline granitoids, western Tibet: Implications for the evolution of the Tethys in NW China [J]. International Geology Review, 2014, 56: 88–103.CrossRefGoogle Scholar
  71. [71]
    LIU De-liang, Shi Ren-deng, DING Lin, HUANG Qi-shuai, ZHANG Xiao-ran, YUE Ya-hui, ZHANG Li-yun. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong-Nujiang Tethyan Ocean [J]. Gondwana Research, 2017, 41: 157–172.CrossRefGoogle Scholar
  72. [72]
    CHAMPION D C, BULTITUDE R J. The geochemical and Sr Nd isotopic characteristics of Paleozoic fractionated S-types granites of north Queensland: Implications for S-type granite petrogenesis [J]. Lithos, 2013, s162–163: 37–56.CrossRefGoogle Scholar
  73. [73]
    CHAPPELL B W. White A J R, I- and S-type granites in the lachlan fold belt [J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83: 1–26.CrossRefGoogle Scholar
  74. [74]
    CHAPPELL B W, WHITE A J R. Two contrasting granite types: 25 years later [J]. Australian Journal of Earth Sciences, 2001, 48: 489–499.CrossRefGoogle Scholar
  75. [75]
    COLLINS W J, RICHARDS S W. Geodynamic significance of S-type granites in circum-Pacific orogens [J]. Geology, 2008, 36: 559–562.CrossRefGoogle Scholar
  76. [76]
    BARBARIN B. Genesis of the two main types of peraluminous granitoids [J]. Geology, 1996, 24: 295–298.CrossRefGoogle Scholar
  77. [77]
    APPLEBY S K, GILLESPIE M R, GRAHAM C M, HINTON R W, OLIVER G J H, KELLY N M. Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U-Pb and Hf isotope study of zircon [J]. Contributions to Mineralogy and Petrology, 2010, 160: 115–132.CrossRefGoogle Scholar
  78. [78]
    WEI Dan, LI Xian-hua, WANG Qiang, WANG Xuan-ce, LIU Yu, WYMAN D A. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off [J]. Precambrian Research, 2014, 254: 59–72.CrossRefGoogle Scholar
  79. [79]
    GUO Zheng-fu, WILSON M. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting [J]. Gondwana Research, 2012, 22: 360–376.CrossRefGoogle Scholar
  80. [80]
    JIANG Yao-hui, ZHAO Peng, ZHOU Qing, LIAO Shi-yong, JIN Guo-dong. Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China [J]. Lithos, 2011, 121: 55–73.CrossRefGoogle Scholar
  81. [81]
    KOESTER E, PAWLEY A R, FERNANDES L A D, PORCHER C C, SOLIANI E. Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern brazil [J]. Journal of Petrology, 2002, 43: 1595–1616.CrossRefGoogle Scholar
  82. [82]
    SYLVESTER P J. Post-collisional strongly peraluminous granites [J]. Lithos, 1998, 45: 29–44.CrossRefGoogle Scholar
  83. [83]
    DOUCE PATINO E A. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? [J]. Geological Society London Special Publications, 1999, 168: 55–75.CrossRefGoogle Scholar
  84. [84]
    WHITE A J R, CHAPPELL B W. Ultrametamorphism and granitoid genesis [J]. Tectonophysics, 1977, 43: 7–22.CrossRefGoogle Scholar
  85. [85]
    GRIFFIN W L, WANG X, JACKSON S E, PEARSON N J, O’REILLY S Y, XU Xi-sheng, ZHOU Xin-min. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes [J]. Lithos, 2002, 61: 237–269.CrossRefGoogle Scholar
  86. [86]
    JI Wen-hua, LI Rong-she, CHEN Shou-jian, HE Shi-ping, ZHAO Zhen-ming, BIAN Xiao-wei, ZHU Hai-ping, CUI Ji-gang, REN Juan-gang. The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of Northwest China and its geological significance [J]. Science China Earth Sciences, 2011, 54(1): 61–72.CrossRefGoogle Scholar
  87. [87]
    MILLER C F, MCDOWELL S M, MAPES R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance [J]. Geology, 2003, 31: 529–532.CrossRefGoogle Scholar
  88. [88]
    GARDIEN V, THOMPSON A B, GRUJIC D, ULMER P. Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting [J]. Journal of Geophysical Research Solid Earth, 1995, 100: 15581–15591.CrossRefGoogle Scholar
  89. [89]
    KING J, HARRIS N, ARGLES T, PARRISH R, ZHANG Hong-fei. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet [J]. Geological Society of America Bulletin, 2011, 123: 218–239.CrossRefGoogle Scholar
  90. [90]
    VISON A D, LOMBARDO B. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating? [J]. Lithos, 2002, 62: 125–150.CrossRefGoogle Scholar
  91. [91]
    ZHANG Hong-fei, HARRIS N, PARRISH R, KELLEY S, ZHANG Li, ROGERS N, ARGLES T, KING J. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform [J]. Earth and Planetary Science Letters, 2004, 228: 195–212.CrossRefGoogle Scholar
  92. [92]
    BARBARIN B. A review of the relationships between granitoid types, their origins and their geodynamic environments [J]. Lithos, 1999, 46: 605–626.CrossRefGoogle Scholar
  93. [93]
    FLOYD P A, WINCHESTER J A. Magma type and tectonic setting discrimination using immobile elements [J]. Earth and Planetary Science Letters, 1975, 27: 211–218.CrossRefGoogle Scholar
  94. [94]
    PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal of Petrology, 1984, 25: 956–983.CrossRefGoogle Scholar
  95. [95]
    HARRIS N B W, PEARCE J A, TINDLE A G. Geochemical characteristics of collision-zone magmatism [J]. Geological Society of London Special Publications, 1986, 19: 67–81.CrossRefGoogle Scholar
  96. [96]
    HEALY B, COLLINS W J, RICHARDS S W. A hybrid origin for Lachlan S-type granites: The Murrumbidgee Batholith example [J]. Lithos, 2004, 78: 197–216.CrossRefGoogle Scholar
  97. [97]
    XI Dang-peng, WAN Xiao-qiao, LI Guo-biao, LI Gang, Cretaceous integrative stratigraphy and timescale of China [J]. Science China Earth Sciences, 2019, 62: 256–286.CrossRefGoogle Scholar
  98. [98]
    QU Xiao-ming, XIN Hong-bo, DU De-dao, CHEN Hua. Ages of post-collisional A-type granite and constraints on the closure of the oceanic basin in the middle segment of the Bangonghu-Nujiang suture, the Tibetan plateau [J]. Geochimica, 2012, 41: 1–14. (in Chinese)Google Scholar
  99. [99]
    FAN Jian-jun, LI Cai, SUN Zhen-ming, XU Wei, WANG Ming, XIE Chao-ming. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean [J]. Journal of Asian Earth Sciences, 2018, 154: 187–201.CrossRefGoogle Scholar
  100. [100]
    FAN Jian-jun, LI Cai, XIE Chao-ming, LIU Yi-ming, XU Jian-xin, CHEN Jing-wen. Remnants of late permian-middle triassic ocean islands in northern Tibet: Implications for the late-stage evolution of the paleo-tethys ocean [J]. Gondwana Research, 2017, 44: 7–21.CrossRefGoogle Scholar
  101. [101]
    MENG Yuan-ku, XU Zhi-qin, XU Yang, MA Shi-wei. Late triassic granites from the quxu batholith shedding a new light on the evolution of the gangdese belt in southern Tibet [J]. Acta Geologica Sinica (English Edition), 2018, 92: 462–481.CrossRefGoogle Scholar
  102. [102]
    KAPP P, YIN An, HARRISON T M, DING Lin, Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet [J]. Geological Society of America Bulletin, 2005, 117: 865–878.CrossRefGoogle Scholar
  103. [103]
    LEIER A L, DECELLES P G, KAPP P, GEHRELS G E. Lower cretaceous strata in the lhasa terrane, tibet, with implications for understanding the early tectonic history of the tibetan plateau [J]. Journal of Sedimentary Research, 2007, 77: 809–825.CrossRefGoogle Scholar
  104. [104]
    XU Meng-jing, LI Cai, ZHANG Xing-zhou, WU Yan-wang, Nature and evolution of the Neo-Tethys in central Tibet: synthesis of ophiolitic petrology, geochemistry, and geochronology [J]. International Geology Review, 2014, 56: 1072–1096.CrossRefGoogle Scholar
  105. [105]
    WEI You-qing, ZHAO Zhi-dan, NIU Yao-ling, ZHU Di-cheng, DONG Liu, WANG Qing, HOU Zeng-qian, MO Xuan-xue, WEI Jiu-chuan. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane [J]. Lithos, 2017, s278–281: 477–490.CrossRefGoogle Scholar
  106. [106]
    ZHU Di-cheng, LI Shi-min, CAWOOD P A, WANG Qing, ZHAO Zhi-dan, LIU Sheng-ao, WANG Li-quan. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction [J]. Lithos, 2016, 245: 7–17.CrossRefGoogle Scholar
  107. [107]
    LIU Zhi-chao, DING Lin, ZHANG Li-yun, WANG Chao, QIU Zhi-li, WANG Jian-gang, SHEN Xiao-li, DENG Xiao-qin. Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba Formation) in the Gangdese arc, southern Tibet: Implications for the Neo-Tethyan subduction, Lithos [J]. 2018, 312: 72–88.CrossRefGoogle Scholar
  108. [108]
    LIPPERT P C, van HINSBERGEN D J J, GUILLAUME D N. The Early Cretaceous to present latitude of the central Lhasa-plano (Tibet): A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia [J]. Special Paper of the Geological Society of America, 2014, 507: 1–21.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral ResourcesCAGSBeijingChina
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingChina
  3. 3.Technology and International Cooperation DivisionMinistry of Nature Resources of China (MLR)BeijingChina
  4. 4.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-PhysicsCentral South UniversityChangshaChina
  5. 5.Geological Research Academy of XinjiangUrumqiChina
  6. 6.Yanduzhongshi Geological Analysis Laboratories Ltd.BeijingChina

Personalised recommendations