Advertisement

Journal of Central South University

, Volume 26, Issue 12, pp 3420–3435 | Cite as

Geochronology, petrogenesis and tectonic significance of Dahongliutan pluton in Western Kunlun orogenic belt, NW China

  • Kun Ding (丁坤)
  • Ting Liang (梁婷)Email author
  • Xiu-qing Yang (杨秀清)
  • Yi Zhou (周义)
  • Yong-gang Feng (凤永刚)
  • Kan Li (李侃)
  • Jia-xin Teng (滕家欣)
  • Rui-ting Wang (王瑞廷)
Article
  • 7 Downloads

Abstract

The Dahongliutan granitic pluton, in the eastern part of the West Kunlun orogenic belt, provides significant insights for studying the tectonic evolution of West Kunlun. This paper presents a systematic study of LA-ICP-MS zircon U-Pb age, major and trace elements, Sr-Nd-Hf isotopes, and the first detailed Li isotope analysis of the Dahongliutan pluton. LA-ICP-MS zircon U-Pb dating shows that the Dahongliutan granites were emplaced in the Late Triassic ((213±2.1) Ma). Geochemical data show relatively high SiO2 contents (68.45 wt%–73.62 wt%) and aluminum saturation index (A/CNK=1.11–1.21) indicates peraluminous high-K calc-alkaline granite. The Dahongliutan granites are relatively high in light rare earth elements (LREE) and large ion lithophile elements (LILEs) (e.g., Rb, K, Th), and relatively depleted in high field strength elements (HFSEs) (e.g., Nb, Ta, P, Ti). The εNd(t) values range from −8.71 to −4.73, and (87Sr/86Sr)i=0.7087–0.71574. Zircons from the pluton yield 176Hf/177Hf values of 0.2826181 to 0.2827683, and εHf(t) values are around 0; the two-stage Hf model ages range from 0.974 to 1.307 Ga. The δ7Li values are 0.76‰–3.25‰, with an average of 2.53‰. Isotopic compositions of the pluton suggest a mixed trend between the partial melting of the Middle Proterozoic ancient crustal material and a juvenile mantle-derived material. This study infers that the Dahongliutan rock mass is formed in the post-collisional extension environment, when the collision between South Kunlun and the Tianshuihai terranes results in the closure of the Palaeo-Tethys. The mantle-derived magma results in partial melting of the lower crust.

Key words

LA-ICP-MS zircon U-Pb age petrogeochemistry Li-Sr-Nd-Hf isotopic composition Dahongliutan pluton West Kunlun orogen China 

西昆仑造山带大红柳滩岩体年代学、成因及其构造意义

摘要

西昆仑造山带东部大红柳滩花岗岩体对于理解西昆仑造山带大陆演化具有重要的指示意义。本 文对该花岗质岩体主、微量元素、Li-Sr-Nd-Hf 同位素和锆石的U-Pb 年龄进行了系统研究。LA-ICP-MS 锆石U-Pb 年龄数据显示,大红柳滩花岗岩体的侵位时代为(213±2.1) Ma,说明大红柳滩岩体形成于晚 三叠世。地球化学数据显示该岩石SiO2 含量为68.45%~73.62%,铝饱和指数(A/CNK)变化区间为 1.11~1.21,A/NK 为在1.52~1.67,属于富钾钙碱性过铝质花岗岩。岩石富集Rb、Th、K 等大离子亲 石元素,亏损Nb、Ta、P、Ti 等高场强元素;大红柳滩花岗岩锶同位素初始比值为(87Sr/86Sr)i=0.7087~ 0.71574,εNd(t)=−8.71~−4.73;锆石176Hf/177Hf 比值为0.2826181~0.2827683,εHf(t)值在0 附近,与同时 期的亏损地幔的εHf(t)偏离较远,二阶段模式年龄(tDM2)为974~1307 Ma;花岗岩样品的δ7Li 含量为 0.76‰~3.25‰,平均2.53‰。推测岩体为中元古代古老地壳物质部分熔融形成,同时可能有少量幔源 物质的加入。综合前人研究成果,本文认为大红柳滩岩体形成于南昆仑地体和甜水海地体发生陆-陆 碰撞造山过程的后碰撞伸展环境下,幔源岩浆底侵作用引起下地壳部分熔融的结果。

关键词

LA-ICP-MS 锆石U-Pb 年龄 岩石地球化学 Li-Sr-Nd-Hf 同位素组成 大红柳滩岩体 西昆仑 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    XIAO Wen-jiao, WINDLEY B F, LIU De-yu, JIAN Ping, LIU Chuan-zhou, YUAN Chao, SUN Min. Accretionary tectonics of the Western Kunlun orogen, China: A Paleozoic-Early Mesozoic, longlived active continental margin with implications for the growth of southern Eurasia [J]. The Journal of Geology, 2005, 113: 687–705.CrossRefGoogle Scholar
  2. [2]
    ZHANG Chuan-lin, LU Song-nian, YU Hai-feng, YE Hai-min. Tectonic evolution of the West Kunlun orogenic belt on the northern margin of the Qinghai-Xizang Plateau: Evidence from zircon SHRIMP and LA-ICP-MS dating [J]. Chinese Science (Series D), 2007, 37(2): 145–154. (in Chinese)CrossRefGoogle Scholar
  3. [3]
    MATTE P, TAPPONNIER P, ARNAUD N, BOURJOT L, AVOUAC J P, VIDAL P. Tectonics of Western Tibet, between the Tarim and the Indus [J]. Earth and Planetary Science Letters, 1996, 142(3, 4): 311–330.CrossRefGoogle Scholar
  4. [4]
    PAN Yu-sheng. Geological evolution of the karakorum-kunlun mountain area [M]. Beijing: Science Press, 2000. (in Chinese)Google Scholar
  5. [5]
    WANG Zhi-hong. Tectonic evolution of the western Kunlun orogenic belt, western China [J]. Journal of Asian Earth Sciences, 2004, 24(2): 153–161.CrossRefGoogle Scholar
  6. [6]
    HAN Fang-lin. Evolution and metallogenic background of the West Kunlun orogenic belt [D]. Beijing: China University of Geosciences, 2006. (in Chinese)Google Scholar
  7. [7]
    LIU Zheng, JIANG Yao-hui, JIA Ru-ya, ZHAO Peng, ZHOU Qing, WANG Guo-chang. Origin of Middle Cambrian and Late Silurian potassic granitoids from the western Kunlun orogen, northwest China: A magmatic response to the Proto-Tethys evolution [J]. Mineralogy Petrology, 2014, 108(1): 91–110.CrossRefGoogle Scholar
  8. [8]
    XIAO Xu-chang, LIU Xun, GAO Rui, KAO H, LUO Zhao-hua. Collision tectonics between the Tarim block (Basin) and the northwestern Tibet plateau: New observations from a multidisciplinary geoscientific investigation in the western Kunlun Moutains [J]. Acta Geologica Sinica, 2001, 75(2): 126–132.Google Scholar
  9. [9]
    QIAO Geng-biao, ZHANG Han-de, WU Yue-zhong, JIN Mou-xun, WEI Du, ZHAO Xiao-jian, CHEN Deng-hui. Geological and geochemical characteristics of the Dahongliutan rock mass in the West Kunlun Mountains and its constraints on the genesis of rocks [J]. Acta Geologica Sinica, 2015, 89(7): 1180–1194. (in Chinese)Google Scholar
  10. [10]
    YAN Qing-he, QIU Zeng-wang, WANG He, WANG Min, WEI Xiao-peng, LI Pei, ZHANG Rong-qing, LI Cong-ying, LIU Jian-ping. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite [J]. Ore Geology Reviews, 2018, 100: 561–573.CrossRefGoogle Scholar
  11. [11]
    HU Jun, WANG Nuo, HAN Hong-wei, WEI Yong, MU Sheng-lu. Analysis of the genesis of the Dahongliutan iron deposit in the Tianshuilun sweetwater block and its prospecting significance [J]. Geotectonics and Metallogenesis, 2016, 40(5): 949–959. (in Chinese)Google Scholar
  12. [12]
    HU Jun, WANG He, HUANG Chao-yang, TONG Lai-xi, MU Sheng-lu, QIU Zeng-wang. Geological characteristics and age of the dahongliutan Fe-ore deposit in the western Kunlun orogenic belt, Xinjiang, northwestern China [J]. Journal of Asian Earth Sciences, 2016, 116: 1–25.CrossRefGoogle Scholar
  13. [13]
    WEI Xiao-peng, WANG Wei, HU Jun, MU Sheng-lu, QIU Zeng-wang, YAN Qing-he, LI Pei. Geochemistry and geochronology of the Dayunliu granite in the West Kunlun Mountains and its geological significance [J]. Geochemistry, 2017, 46(1): 66–80. (in Chinese)Google Scholar
  14. [14]
    ZHANG Qi-chao, LIU Yan, WU Zhen-han, HUANG He, LI Kan, ZHOU Qing. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: Petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys [J]. International Geology Review, 2019, 61(2): 175–194.CrossRefGoogle Scholar
  15. [15]
    XIAO Wen-you, HOU Quan-lin, LI Ji-liang, WINDLEY B F, HAO Jie, FANG Ai-min, ZHOU Hui, WANG Zhi-hong, CHEN Han-lin, ZHANG Guo-cheng, YUAN Chao. Tectonic facies and the archipelago-accretion process of the West Kunlun, China [J]. Science China Earth Sciences, 2000, 43(1): 134–143.CrossRefGoogle Scholar
  16. [16]
    DU Hong-xing. The study of ore-forming characters and prospecting orientation of lead-zinc deposits from Chalukou to Tianshuihai ranges in west Kunlun, Xinjiang [D]. Beijing: China University of Geosciences, 2014. (in Chinese)Google Scholar
  17. [17]
    ZHANG Yu, NIU Yao-ling, HU Yan, LIU Jin-ju, YE Lei, KONG Juan-juan, DUAN Meng. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China-evidence from geochronology and geochemistry of the Arkarz pluton [J]. Lithos, 2016, 245(12): 191–204.CrossRefGoogle Scholar
  18. [18]
    ROBINSON A C. Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen [J]. Earth and Planetary Science Letters, 2009, 279(1): 123–130.CrossRefGoogle Scholar
  19. [19]
    LIU Zheng, JIANG Yao-hui, JIA Ru-ya, ZHAO Peng, ZHOU Qing. Origin of late Triassic high-k calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet plateau, northwest China: Implications for paleo-tethys evolution [J]. Gondwana Research, 2015, 27(1), 326–341.CrossRefGoogle Scholar
  20. [20]
    WANG Chao, LIU Liang, KORHONEN F, YANG Wen-qiang, CAO Yu-ting, HE Shi-ping, ZHU Xiao-hui, LIANG Wen-ting. Origins of Early Mesozoic granitoids and their enclaves from West Kunlun, NW China: Implications for evolving magmatism related to closure of the Paleo-Tethys ocean [J]. International Journal of Earth Sciences, 2015, 105(3): 1–24.Google Scholar
  21. [21]
    LIU Yong-sheng, HU Zhao-chu, ZONG Ke-qing, GAO Chang-gui, GAO Shan, XU Juan, CHEN Hai-hong. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICPMS [J]. Chinese Sci Bull, 2010, 55(15): 1535–1546.CrossRefGoogle Scholar
  22. [22]
    LUDWIG K R. User’s manual for Isoplot 3.0: A geochronological toolkit for Microsoft excel [M]. Berkeley Geochronological Center, Special Publication 4, 2003.Google Scholar
  23. [23]
    YUAN Hong-lin, GAO Shan, DAI Meng-ning, ZONG Chun-lei, GÜNTHER D, FONTAINE G H. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS [J]. Chemical Geology, 2008, 247: 100–118.CrossRefGoogle Scholar
  24. [24]
    ZHANG Hong-fei, GAO Shan, ZHONG Zeng-qiu, ZHANG Ben-ren, ZHANG Li, HU Shen-hong. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China [J]. Chemical Geology, 2002, 186(3): 281–299.CrossRefGoogle Scholar
  25. [25]
    NISHIO Y, NAKAI S. Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry [J]. Analytica Chimica Acta, 2002, 456(2): 271–281.CrossRefGoogle Scholar
  26. [26]
    BRANT C, COOGAN L A, GILLIS K M, SEYFRIED W E, PESTER N J, SPENCE J. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacifc Rise [J]. Geochimica Cosmochimica Acta, 2012, 96(11): 272–293.CrossRefGoogle Scholar
  27. [27]
    KING P L, CHAPPELL B W, ALLEN C M, WHITE A J. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite [J]. Journal of the Geological Society of Australia, 2001, 48(4): 501–514.Google Scholar
  28. [28]
    CHAPPELL B W, WHITE A J R. Two contrasting granite types: 25 years later [J]. Journal of the Geological Society of Australia, 2001, 48(4): 489–499.Google Scholar
  29. [29]
    MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids [J]. Geological Society of America Bulletin, 1989, 101(5): 635–643.CrossRefGoogle Scholar
  30. [30]
    PECCERILLO A, TAYLOR S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey [J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63–81.CrossRefGoogle Scholar
  31. [31]
    PEARCE J A, HARRIS N B W, TINDLE A G. Trace-elementdiscrimination diagrams for the tectonic interpretation of graniticrocks [J]. Journal of Petrology, 1984, 25(4): 956–983.CrossRefGoogle Scholar
  32. [32]
    SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society London Special Publications, 1989, 42(1): 313–345.CrossRefGoogle Scholar
  33. [33]
    STILLE P, STEIGER R H. Hf isotope systematics in granitoids from the central and southern Alps [J]. Contributions to Mineralogy & Petrology, 1991, 107(3): 273–278.CrossRefGoogle Scholar
  34. [34]
    SYLVESTER P J. Post-collisional strongly peraluminous granites [J]. Lithos, 1998, 45: 29–44.CrossRefGoogle Scholar
  35. [35]
    XIAO Qing-hui. Research thinking and method of granite [M]. Beijing, China: Geological Publishing House, 2002. (in Chinese)Google Scholar
  36. [36]
    TANG Yan-jie, ZHANG H F, NAKAMURA E, MORIGUTI T, KOBAYASHI K, YING J F. Lithium isotopic systematics of peridotite xenoliths from Hannuoba, north China craton: Implications for melt-rock interaction in the considerably thinned lithospheric mantle [J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4327–4341.CrossRefGoogle Scholar
  37. [37]
    NISHIO Y, NAKAI S, YAMAMOTO J, SUMINO H, MATSUMOTO T, PRIKHODKO V S. Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: Implications for EM1 origin [J]. Earth & Planetary Science Letters, 2004, 217(3, 4): 245–261.CrossRefGoogle Scholar
  38. [38]
    DEFANT M J, CLARK L F, STEWART R H, DRUMMOND M S, BOER J Z D, MAURY R C. Andesite and dacite genesis via contrasting processes: The geology and geochemistry of EI valle volcano, Panama [J]. Contributions to Mineralogy Petrology, 1991, 106(3): 309–324.CrossRefGoogle Scholar
  39. [39]
    SONG Wei, WANG Jian, LIU Jin-lin, BAO Zhen-yan. Geochemical characteristics and research significance of intrusive rocks and zircons in the indosinian period of the west kunlun mountains and the indosinian [J]. Journal of Jilin University: Earth Science Edition, 2015, 45(5): 1418–1435. (in Chinese)Google Scholar
  40. [40]
    KANG Lei, XIAO Pei-xi, GAO Xiao-feng, QI Ren-gang, GUO Lei, DONG Zeng-chan. Geochemical characteristics and petrogenesis of Muztagata intrusion in Western Kunlun orogenic belt and their tectonic significance [J]. Geological Bulletin of China, 2012, 31(12): 2001–2014. (in Chinese)Google Scholar
  41. [41]
    ZHANG Qi-chao, WU Zhen-han, LI Wei, HUANG He, LIU Wei, LIU Zhi-wei. Pb-Hf isotope composition, petrogenesis and source characteristics of the Alamas rock mass in the eastern segment of the West Kunlun orogenic belt [J]. Journal of Geology, 2017, 91(12): 2667–2678. (in Chinese)Google Scholar
  42. [42]
    ZHU Jie, LI Qiu-gen, WANG Zong-qi, TANG Hao-shu, CHEN Xu, XIAO Bing. Early Cambrian granitoids in the sweet waters of the West Kunlun Mountains and their tectonic significance [J]. Northwest Geology, 2016(4): 1–18. (in Chinese)Google Scholar
  43. [43]
    CAO Ying, WANG Jian, LIU Jian-guo, BAO Zhen-yan, SONG Wei, LI Ai. Genesis and geological significance of Adakite rocks in the Early Paleozoic magmatic arc Datong rock mass in West Kunlun [J]. Journal of Jilin University: Earth Science Edition, 2016, 46(2): 425–442. (in Chinese)Google Scholar
  44. [44]
    DENG Jin-fu. Rock genesis, tectonic setting and mineralization [M]. Geological Publishing House, 2004. (in Chinese)Google Scholar
  45. [45]
    BARBARIN B. A review of the relationships between granitoid types, their origins and their geodynamic environments [J]. Lithos, 1999, 46(3): 605–626.MathSciNetCrossRefGoogle Scholar
  46. [46]
    DUCHESNE J C, BERZA T, LIéGEOIS J P, AUWERA J V. Shoshonitic liquid line of descent from diorite to granite:the late Precambrian post-collisional Tismana pluton (south Carpathians, Romania) [J]. Lithos, 1998, 45(1–4): 281–303.CrossRefGoogle Scholar
  47. [47]
    LU Jia-yi, YU Xiao-fei, SUN Feng-yue, CHEN Jing, LI Bi-le, QIAN Wei. Study on zircon U-Pb dating and ore-forming fluid characteristics of the Bandursi hot copper ore deposit in West Kunlun [J]. Acta Petrologica Sinica, 2015, 31(9): 2696–2706. (in Chinese)Google Scholar
  48. [48]
    JIANG Yao-hui, JIA Ru-ya, LIU Zheng, LIAO Shi-yong, ZHAO Peng, ZHOU Qing. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys [J]. Lithos, 2013, s156–159(1): 13–30.CrossRefGoogle Scholar
  49. [49]
    MATTEM F, SCHNEIDER W. Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China) [J]. Journal of Asian Earth Sciences, 2000, 18: 637–650.CrossRefGoogle Scholar
  50. [50]
    ZHANG Chuan-lin, YU Hai-feng, WANG Ai-guo, GUO Kun-yi. Age determination of the Triassic two types of granites in the western segment of West Kunlun and its tectonic significance [J]. Journal of Geology, 2005, 79(5): 645–652. (in Chinese)Google Scholar
  51. [51]
    LIAO Shi-yong, JIANG YAO-hui, YANG Wan-zhi, ZHOU Qing, JIN Guo-dong, ZHAO Peng. Subducting sediment-derived arc granitoids: Evidence from the datong pluton and its quenched enclaves in the western kunlun orogen, northwest china [J]. Mineralogy & Petrology, 2010, 100(1, 2): 55–74.CrossRefGoogle Scholar
  52. [52]
    LIU Zheng, JIANG Yao-hui, JIA Ru-ya, ZHAO Peng, ZHOU Qing. Origin of Late Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet Plateau, northwest China: Implications for Paleo- Tethys evolution [J]. Gondwana Research, 2015, 27(1): 326–341.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kun Ding (丁坤)
    • 1
  • Ting Liang (梁婷)
    • 1
    • 2
    Email author
  • Xiu-qing Yang (杨秀清)
    • 1
    • 2
  • Yi Zhou (周义)
    • 1
  • Yong-gang Feng (凤永刚)
    • 1
    • 2
  • Kan Li (李侃)
    • 3
  • Jia-xin Teng (滕家欣)
    • 3
  • Rui-ting Wang (王瑞廷)
    • 4
  1. 1.College of Earth Sciences and ResourcesChang’an UniversityXi’anChina
  2. 2.Mineralization and Dynamics Laboratory of Chang’an UniversityXi’anChina
  3. 3.Xi’an Geological Survey CenterChina Geological SurveyXi’anChina
  4. 4.Northwest Nonferrous Metals Geological Mining Group Limited CompanyXi’anChina

Personalised recommendations