Advertisement

Journal of Central South University

, Volume 26, Issue 12, pp 3397–3409 | Cite as

Mechanical properties of bimrocks with high rock block proportion

  • Yue-xiang Lin (林越翔)
  • Li-min Peng (彭立敏)
  • Ming-feng Lei (雷明锋)Email author
  • Wei-chao Yang (杨伟超)
  • Jian-wen Liu (刘建文)
Article

Abstract

For the investigation of mechanical properties of the bimrocks with high rock block proportion, a series of laboratory experiments, including resonance frequency and uniaxial compressive tests, are conducted on the 64 fabricated bimrocks specimens. The results demonstrate that dynamic elastic modulus is strongly correlated with the uniaxial compressive strength, elastic modulus and block proportions of the bimrocks. In addition, the density of the bimrocks has a good correlation with the mechanical properties of cases with varying block proportions. Thus, three crucial indices (including matrix strength) are used as basic input parameters for the prediction of the mechanical properties of the bimrocks. Other than adopting the traditional simple regression and multi-regression analyses, a new prediction model based on the optimized general regression neural network (GRNN) algorithm is proposed. Note that, the performance of the multi-regression prediction model is better than that of the simple regression model, owing to the consideration of various influencing factors. However, the comparison between model predictions indicates that the optimized GRNN model performs better than the multi-regression model does. Model validation and verification based on fabricated data and experimental data from the literature are performed to verify the predictability and applicability of the proposed optimized GRNN model.

Key words

block-in-matrix-rock high rock block proportion resonance frequency test general regression neural network 

高含石率胶结型土石混合体力学性能试验研究

摘要

本文基于单轴压缩以及共振频率试验,对多组不同特征的高含石率胶结型土石混合体试件进行 测试,以探究其物理力学特性。试验结果显示,试件的动弹性模量与其单轴抗压强度、弹性模量以及 含石率均存在显著的相关性。此外,试件的密度以及基质强度也与其宏观力学性能密切相关。因此, 选取以上三项典型指标,对高含石率胶结型土石混合体的力学性能进行预测。除传统的回归分析手段 以外,本文通过遗传算法对广义回归神经网络算法进行优化,并建立了相应的预测模型。预测结果表 明,尽管多元回归分析相对于一元回归分析而言预测性能有所提高,但基于优化回归神经网络的预测 结果更为理想。分别采用试验数据以及文献中的数据,证实了所建立的预测模型具有良好的适应性和 理想的预测性能。

关键词

胶结型土石混合体 高含石率 共振频率测试 广义回归神经网络 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    SONMEZ H, GOKCEOGLU C, MEDLEY E W, TUNCAY E, NEFESLIOGLU H A. Estimating the uniaxial compressive strength of a volcanic bimrock[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(4): 554–561. DOI:  https://doi.org/10.1016/j.ijrmms.2005.09.014. CrossRefGoogle Scholar
  2. [2]
    MAHDEVARI S, MAAREFVAND P. Applying ultrasonic waves to evaluate the volumetric block proportion of bimrocks [J]. Arabian Journal of Geosciences, 2017, 10(9): 204. DOI:  https://doi.org/10.1007/s12517-017-2999-8. CrossRefGoogle Scholar
  3. [3]
    KALENDER A, SONMEZ H, MEDLEY E, TUNUSLUOGLU C, KASAPOGLU K E. An approach to predicting the overall strengths of unwelded bimrocks and bimsoils [J]. Engineering Geology, 2014, 183: 65–79. DOI:  https://doi.org/10.1016/j.enggeo.2014.10.007. CrossRefGoogle Scholar
  4. [4]
    ZHAO M H, LIU J J, LUO H, YANG Ming-hui. Experimental studies of shear strength characteristics and influencing factors of soil-rock aggregate mixture [J]. Yantu Lixue/Rock and Soil Mechanics, 2017, 38(4): 965–972. DOI: https://doi.org/10.16285/j.rsm.2017.04.006. Google Scholar
  5. [5]
    ZHANG Hai-yang, XU Wen-jie, YU Yu-zhen. Triaxial tests of soil-rock mixtures with different rock block distributions [J]. Soils & Foundations, 2016, 56(1): 44–56. DOI:  https://doi.org/10.1016/j.sandf.2016.01.004. CrossRefGoogle Scholar
  6. [6]
    MEDLEY E, GOODMAN R E. Estimating the block volumetric proportions of melanges and similar blockin-matrix rocks (bimrocks) [C]// 1st North American Rock Mechanics Symposium. Austin, the United States, 1994: 1–8.Google Scholar
  7. [7]
    LINDQUIST E S. The strength and deformation properties of melange [D]. Department of Civil Engineering, University of California, 1994. https://ci.nii.ac.jp/naid/10006538153.
  8. [8]
    NIE Zhi-hong, LIANG Zheng-yu, WANG Xiang, GONG Jian. Evaluation of granular particle roundness using digital image processing and computational geometry [J]. Construction and Building Materials, 2018, 172: 319–329. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.246. CrossRefGoogle Scholar
  9. [9]
    WANG Xiang, LIANG Zheng-yu, NIE Zhi-hong, GONG Jian. Stochastic numerical model of stone-based materials with realistic stone-inclusion features [J]. Construction and Building Materials, 2019, 197: 830–848. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.062. CrossRefGoogle Scholar
  10. [10]
    MAHDEVARI S, MOAREFVAND P. Experimental investigation of fractal dimension effect on deformation modulus of an artificial bimrock [J]. Bulletin of Engineering Geology and the Environment, 2017, 77(4): 1729–1737. DOI:  https://doi.org/10.1007/s10064-017-1074-8 CrossRefGoogle Scholar
  11. [11]
    XU Wen-jie, YUE Zhong-qi, HU Rui-lin. Study on the mesostructure and mesomechanical characteristics of the soil-rock mixture using digital image processing based finite element method [J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(5): 749–762. DOI:  https://doi.org/10.1016/j.ijrmms.2007.09.003. CrossRefGoogle Scholar
  12. [12]
    SONMEZ H, ERCANOGLU M, KALENDER A, DAGDELENLER G, TUNUSLUOGLU C. Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension [J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 86: 91–103. DOI:  https://doi.org/10.1016/j.ijmms.2016.03.022. CrossRefGoogle Scholar
  13. [13]
    SONMEZ H, GOKCEOGLU C, TUNCAY E, MEDLEY E W, NEFESLIOGLU H A. Relationship between volumetric block proportion and overall UCS of a volcanic bimrock [J]. Felsbau: Rock Soil Engineering, 2004, 22(5): 27–34. https://www.researchgate.net/publication/265277014.Google Scholar
  14. [14]
    KAHRAMAN S, ALBER M. Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix [J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(8): 1277–1287. DOI:  https://doi.org/10.1016/j.ijrmms.2006.03.017. CrossRefGoogle Scholar
  15. [15]
    KAHRAMAN S, ALBER M, FENER M, GUNAYDIN O. Evaluating the geomechanical properties of Misis fault breccia (Turkey) [J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(8): 1469–1479. DOI:  https://doi.org/10.1016/j.ijrmms.2008.02.010.CrossRefGoogle Scholar
  16. [16]
    SLATALLA N, ALBER M, KAHRAMAN S. Analyses of acoustic emission response of a fault breccia in uniaxial deformation [J]. Bulletin of Engineering Geology & the Environment, 2010, 69(3): 455–463. DOI:  https://doi.org/10.1007/s10064-010-0296-9. CrossRefGoogle Scholar
  17. [17]
    HANEBERG W C. Simulation of 3-D block populations to characterize outcrop sampling bias in block-in-matrix rocks(bimrocks) [J]. Felsbau: Rock Soil Engineering, 2004, 22(5): 19–26. http://bimrocks.com/bimsite/wp-content/uploads/2010/07/HanebergFelsbau2004.pdf.Google Scholar
  18. [18]
    KAHRAMAN S, ALBER M, FENER M, GUNAYDIN O. An assessment on the indirect determination of the volumetric block proportion of Misis fault breccia (Adana, Turkey) [J]. Bulletin of Engineering Geology & the Environment, 2015, 74(3): 899–907. DOI:  https://doi.org/10.1007/s10064-014-0666-9. CrossRefGoogle Scholar
  19. [19]
    WANG Yu, LI Xiao. Experimental study on cracking damage characteristics of a soil and rock mixture by UPV testing [J]. Bulletin of Engineering Geology & the Environment, 2015, 74(3): 775–788. DOI:  https://doi.org/10.1007/s10064-014-0673-x. CrossRefGoogle Scholar
  20. [20]
    WANG Yu, LI Xiao, HU R L, LI Shou-ding, WANG J Y. Experimental study of the ultrasonic and mechanical properties of SRM under compressive loading [J]. Environmental Earth Sciences, 2015, 74(6): 5023–5037. DOI: https://doi.org/10.1007/s12665-015-4529-x. CrossRefGoogle Scholar
  21. [21]
    SONMEZ H, TUNCAY E, GOKCEOGLU C. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(5): 717–729. DOI:  https://doi.org/10.1016/j.ijrmms.2004.01.011. CrossRefGoogle Scholar
  22. [22]
    YESILNACAR E, TOPAL T. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey) [J]. Engineering Geology, 2005, 79(3): 251–266. DOI:  https://doi.org/10.1016/j.enggeo.2005.02.002. CrossRefGoogle Scholar
  23. [23]
    AKSOY H, ERCANOGLU M. Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation [J]. Natural Hazards and Earth System Sciences, 2006, 6(6): 941–954. DOI:  https://doi.org/10.5194/nhess-6-941-2006. CrossRefGoogle Scholar
  24. [24]
    SONMEZ H, GOKCEOGLU C, KAYABASI A, NEFESLIOGLU H A. Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation [J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(2): 224–235. DOI:  https://doi.org/10.1016/j.ijrmms.2005.06.007.CrossRefGoogle Scholar
  25. [25]
    KAHRAMAN S, GUNAYDIN O, ALBER M, FENER M. Evaluating the strength and deformability properties of Misis fault breccia using artificial neural networks [J]. Expert Systems with Applications, 2009, 36(3): 6874–6878. DOI:  https://doi.org/10.1016/j.eswa.2008.08.002. CrossRefGoogle Scholar
  26. [26]
    SONMEZ H, ERCANOGLU M, KALENDER A, DAGDELENLER G, TUNUSLUOGLU C. Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension [J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 86: 91–103. DOI:  https://doi.org/10.1016/j.ijmms.2016.03.022. CrossRefGoogle Scholar
  27. [27]
    GUO Wei-yao, ZHAO Tong-bin, TAN Yun-liang, YU Feng-hai, HU Shan-chao, YANG Fu-qiang. Progressive mitigation method of rock bursts under complicated geological conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 96: 11–22. DOI:  https://doi.org/10.1016/j.ijrmms.2017.04.011. CrossRefGoogle Scholar
  28. [28]
    GUO Wei-yao, TAN Yun-liang, YU Feng-hai, ZHAO Tong-bin, HU Shan-chao, HUANG Dong-mei, QIN Zhe. Mechanical behavior of rock-coal-rock specimens with different coal thicknesses [J]. Geomechanics and Engineering, 2018, 15(4): 1017–1027. DOI:  https://doi.org/10.12989/gae.2018.15.4.1017. Google Scholar
  29. [29]
    ZHAO Tong-bin, GUO Wei-yao, TAN Yun-liang, LU Cai-ping, WANG Cheng-wu. Case histories of rock bursts under complicated geological conditions [J]. Bulletin of Engineering Geology and the Environment, 2018, 77(4): 1529–1545. DOI:  https://doi.org/10.1007/s10064-017-1014-7. CrossRefGoogle Scholar
  30. [30]
    AFIFIPOUR M, MOAREFVAND P. Mechanical behavior of bimrocks having high rock block proportion [J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 65(1): 40–48. DOI:  https://doi.org/10.1016/j.ijrmms.2013.11.008. CrossRefGoogle Scholar
  31. [31]
    AFIFIPOUR M, MOAREFVAND P. Experimental study of post-peak behavior of bimrocks with high rock block proportions [J]. Journal of Central South University, 2014, 21(2): 761–767. DOI:  https://doi.org/10.1007/s11771-014-1999-z. CrossRefGoogle Scholar
  32. [32]
    Nanjing Water Conservancy Science Research Institute. Soil test technical manuals [M]. Beijing: China Communication Press, 2004. (in Chinese)Google Scholar
  33. [33]
    BS1377-1. Methods of test for soils for civil engineering purposes—Part 1: General requirements and sample preparation [S].Google Scholar
  34. [34]
    GB/T 50266-2013. Standards for test methods of engineering rock mass [S].Google Scholar
  35. [35]
    Operator’s manual for E-Meter MK II resonance frequency tester [M]. Chicago: James Instruments Inc, 2013.Google Scholar
  36. [36]
    YANG Hao, ZHOU Zhong, WANG Xiang-can, ZHANG Qi-fang. Elastic modulus calculation model of a soil-rock mixture at normal or freezing temperature based on micromechanics approach [J]. Advances in Materials Science and Engineering, 2015, 576080: 1–10. DOI:  https://doi.org/10.1155/2015/576080. Google Scholar
  37. [37]
    FEREIDOONI D. Determination of the geotechnical characteristics of hornfelsic rocks with a particular emphasis on the correlation between physical and mechanical properties [J]. Rock Mechanics & Rock Engineering, 2016, 49(7): 1–14. DOI:  https://doi.org/10.1007/s00603-016-0930-3. CrossRefGoogle Scholar
  38. [38]
    KHAJEVAND R, FEREIDOONI D. Assessing the empirical correlations between engineering properties and P-wave velocity of some sedimentary rock samples from Damghan, northern Iran [J]. Arabian Journal of Geosciences, 2018, 11(18): 528–547. DOI:  https://doi.org/10.1007/s12517-018-3810-1. CrossRefGoogle Scholar
  39. [39]
    LIN Yue-xiang, PENG Li-min, LEI Ming-feng, WANG Xiang, CAO Cheng-yong. Predicting the mechanical properties of bimrocks with high rock block proportions based on resonance testing technology and damage theory [J]. Applied Sciences, 2019, 3537: 1–15. DOI:  https://doi.org/10.3390/app9173537. Google Scholar
  40. [40]
    LEI Ming-feng, LIU Ji-yao, LIN Yue-xiang, SHI Cheng-hua, LIU Can. Deformation characteristics and influence factors of a shallow tunnel excavated in soft clay with high plasticity [J]. Advances in Civil Engineering, 2019, 7483628: 1–14. DOI:  https://doi.org/10.1155/2019/7483628. Google Scholar
  41. [41]
    SPECHT D F. A general regression neural network [J]. IEEE Transactions on Neural Networks, 2002, 2(6): 568–576. DOI:  https://doi.org/10.1109/72.97934. CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil EngineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Engineering Structure of Heavy Haul RailwayCentral South UniversityChangshaChina

Personalised recommendations