Journal of Central South University

, Volume 26, Issue 12, pp 3359–3371 | Cite as

Non-linear performance analysis and voltage control of MFC based on feedforward fuzzy logic PID strategy

  • Qing-zhu Luo (罗青竹)
  • Ai-min An (安爱民)Email author
  • Hao-chen Zhang (张浩琛)
  • Fan-cheng Meng (孟凡成)


Microbial fuel cell (MFC) is a kind of promising clean power supply energy equipment, but serious nonlinearities and disturbances exist when the MFC runs, and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly. Regulating the feeding flow is an effective way to achieve this goal, and especially, the satisfactory results can be achieved by regulating anode feeding flow. In this work, a feedforward fuzzy logic PID algorithm is proposed. The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC, and corresponding PID parameters are calculated according to defuzzification. The magnitude value of the current density is used to simulate the value of the external load. The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm. The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.

Key words

microbial fuel cell feedforward fuzzy logic PID nonlinear performance analysis output voltage tracking 

基于前馈模糊逻辑PID 策略的MFC 电压控制和非线性性能分析


微生物燃料电池(MFC)是一种具有应用前景的清洁供电能源设备, 但在其运行过程中存在着严 重的非线性和干扰, 保证其输出电压快速、平稳地达到设定值是一个重要课题. 调节进料流量是实现 这一目标的有效途径, 特别是通过调节阳极进料流量可以达到满意的效果. 本文使用了一种前馈模糊 逻辑PID 算法, 引入模糊逻辑系统来处理MFC 的非线性动态特性, 并根据解模糊化原理计算出相应 的PID 参数. 电流密度的大小值用于模拟外部负载的大小. 仿真结果表明, 前馈模糊逻辑PID 方法能 够快速、平稳地跟踪设定值. 与其他三种控制方法相比, 该方法跟踪精度较佳, 抗负载突发干扰的能 力较强.


微生物燃料电池 前馈模糊逻辑PID 非线性性能分析 输出电压跟踪 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    KADIER A, KALIL M S, ABDESHAHIAN P, CHANDRASEKHAR K, MOHAMED A, AZMAN N F, LOGRONO W, SIMAYI Y, HAMID A A. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals [J]. Renewable and Sustainable Energy Reviews, 2016, 61: 501–525.CrossRefGoogle Scholar
  2. [2]
    JAFARY T, DAUD W R W, GHASEMI M, KIM B H, MD JAHIM J, ISMAIL M, LIM S S. Biocathode in microbial electrolysis cell; present status and future prospects [J]. Renewable and Sustainable Energy Reviews, 2015, 47: 23–33.CrossRefGoogle Scholar
  3. [3]
    LOGAN B E, HAMELERS B, ROZENDAL R, SCHRÖDER U, KELLER J, FREGUIA S, AELTERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells: Methodology and technology [J]. Environmental Science & Technology, 2006, 40(17): 5181–5192.CrossRefGoogle Scholar
  4. [4]
    BOGHANI H C, KIM J R, DINSDALE R M, GUWY A J, PREMIER G C. Analysis of the dynamic performance of a microbial fuel cell using a system identification approach [J]. Journal of Power Sources, 2013, 238: 218–226.CrossRefGoogle Scholar
  5. [5]
    LI Xiao-min, CHENG Ka-yu, WONG J W C. Bioelectricity production from food waste leachate using microbial fuel cells: Effect of NaCl and pH [J]. Bioresource Technology, 2013, 149: 452–458.CrossRefGoogle Scholar
  6. [6]
    LOGAN B, CHENG Shao-an, WATSON V, ESTADT G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells [J]. Environmental Science & Technology, 2007, 41(9): 3341–3346.CrossRefGoogle Scholar
  7. [7]
    DI LORENZO M, SCOTT K, CURTIS T P, HEAD I M. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell [J]. Chemical Engineering Journal, 2010, 156(1): 40–48.CrossRefGoogle Scholar
  8. [8]
    REN H, TORRES C I, PARAMESWARAN P, RITTMANN B E, CHAE J. Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length [J]. Biosensors and Bioelectronics, 2014, 61: 587–592.CrossRefGoogle Scholar
  9. [9]
    CHENG Shao-an, LOGAN B E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells [J]. Bioresource Technology, 2011, 102(6): 4468–4473.CrossRefGoogle Scholar
  10. [10]
    BOROLE A P, HAMILTON C Y, VISHNIVETSKAYA T, LEAK D, ANDRAS C. Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems [J]. Biochemical Engineering Journal, 2009, 48(1): 71–80.CrossRefGoogle Scholar
  11. [11]
    BOGHANI H C, MICHIE I, DINSDALE R M, GUWY A J, PREMIER G C. Control of microbial fuel cell voltage using a gain scheduling control strategy [J]. Journal of Power Sources, 2016, 322: 106–115.CrossRefGoogle Scholar
  12. [12]
    BOGHANI H C, DINSDALE R M, GUWY A J, PREMIER G C. Sampled-time control of a microbial fuel cell stack [J]. Journal of Power Sources, 2017, 356: 338–347.CrossRefGoogle Scholar
  13. [13]
    LI Hui-min, WANG Xiao-bo, SONG Shang-bin, LI Hao. Vehicle control strategies analysis based on PID and fuzzy logic control [J]. Procedia Engineering, 2016, 137: 234–243.CrossRefGoogle Scholar
  14. [14]
    YAN Min-xiu, FAN Li-ping. Constant voltage output in two-chanber microbial fuel cell under fuzzy PID control [J]. International Journal of Electrochemical Science, 2013, 8: 3321–3332.Google Scholar
  15. [15]
    WANG Guan-wen, FENG Chun-hua. Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell [J]. Polymers, 2017, 9(12): 220.CrossRefGoogle Scholar
  16. [16]
    LI Jing, LI Jie, LAI Yan-qing, SONG Hai-sheng, ZHANG Zhi-an, LIU Ye-xiang. Influence of KOH activation techniques on pore structure and electrochemical property of carbon electrode materials [J]. Journal of Central South University of Technology, 2006, 13(4): 360–366.CrossRefGoogle Scholar
  17. [17]
    LAI Bin, WANG Peng, LI Hao-ran, DU Zhu-wei, WANG Lijuan, BI Si-chao. Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells [J]. Bioresource Technology, 2013, 131: 321–324.CrossRefGoogle Scholar
  18. [18]
    OLIVEIRA V B, SIMÖES M, MELO L F, PINTO A M F R. A 1D mathematical model for a microbial fuel cell [J]. Energy, 2013, 61: 463–471.CrossRefGoogle Scholar
  19. [19]
    PINTO R P, SRINIVASAN B, MANUEL M F, TARTAKOVSKY B. A two-population bio-electrochemical model of a microbial fuel cell [J]. Bioresource Technology, 2010, 101(14): 5256–5265.CrossRefGoogle Scholar
  20. [20]
    BATSTONE D J, KELLER J, ANGELIDAKI I, KALYUZHNYI S V, PAVLOSTATHIS S G, ROZZI A, SANDERS W T M, SIEGRIST H, VAVILIN V A. The IWA anaerobic digestion model No 1 (ADM1) [J]. Water Science and Technology, 2002, 45(10): 65–73.CrossRefGoogle Scholar
  21. [21]
    CHEN Jia-yi, ZHAO Lin, LI Nan, LIU Hang. A microbial fuel cell with the three-dimensional electrode applied an external voltage for synthesis of hydrogen peroxide from organic matter [J]. Journal of Power Sources, 2015, 287: 291–296.CrossRefGoogle Scholar
  22. [22]
    ZENG Ying-zhi, CHOO Y F, KIM B H, WU Ping. Modeling and simulation of two-chamber microbial fuel cell [J]. Journal of Power Sources, 2010, 195(1): 79–89.CrossRefGoogle Scholar
  23. [23]
    VOJTESEK J, DOSTÁL P. Nostradamus 2014: Prediction, modeling and analysis of complex systems [M]. Cham: Springer International Publishing, 2014: 195–204.zbMATHGoogle Scholar
  24. [24]
    AN Ai-min, LIU Yun-li, ZHANG Hao-chen, ZHENG Chen-dong, FU Juan. Dynamic performance analysis and neural network predictive control of microbial fuel cell [J]. CIESC Journal, 2017, 68: 1090–1098.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringLanzhou University of TechnologyLanzhouChina
  2. 2.Key Laboratory of Gansu Advanced Control for Industrial ProcessesLanzhouChina
  3. 3.National Demonstrain Center for Experimental Electrical and Control Engineering EducationLanzhou University of TechnologyLanzhouChina

Personalised recommendations