Advertisement

Journal of Central South University

, Volume 26, Issue 12, pp 3305–3314 | Cite as

Finite element simulation and microstructure of two-pass inner spinning process of curved-generatrix cone cylindrical parts with annealing/quenching

  • Zeng-liang Hao (郝增亮)
  • Zhe-yi Yang (杨哲懿)
  • Wei Wei (魏巍)
  • Lei Liu (刘磊)
  • Jun-ting Luo (骆俊廷)Email author
  • Jin-heng Liu (刘金恒)
Article
  • 2 Downloads

Abstract

A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell. That is, annealing at 360°C for 2 h followed by the 1st pass spinning, and finally quenching in ice water after holding for 1 h at 498 °C followed by the 2nd pass spinning. ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters. The distribution laws of spinning force, the stress and strain under different forming processes were compared and analyzed. The mechanical properties and microstructure of the products are subsequently analyzed. The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform, and the hardness and the mechanical performance are improved. The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent. And the second phase grain size distributed uniformly in the range of 3–6 µm. Whereas, the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process.

Key words

curved generatrix conical internal spinning process annealing/quenching small-end rotations finite element simulation 

曲母线锥筒形件退火/淬火-2 道次内旋压成形有限元仿真及制品的微观组织

摘要

本文提出大型锥筒形薄壁壳体小端起旋退火/淬火-2 道次内旋压成形工艺,即 360 °C 保温2 h 毛坯退火-第1 道次旋压-498 °C 保温1 h 水淬-第2 道次旋压。采用ABAQUS 有限元软件对不同工艺 参数下的成形过程进行有限元模拟,对比分析不同成形工艺下的旋压力、应力和应变的分布规律,并 对旋压制品的力学性能及微观组织进行分析。结果表明:2 道次内旋压下成形件的应变和残余应力较 均匀,硬度和力学性能得到改善;第2 道次成形时蒙皮部分减薄量为0.15 mm 时制品的组织性能较好, 第二相晶粒尺寸在3~6 μm 区间内分布均匀,而当蒙皮部分减薄量超过0.20 mm 时,容易造成制品的 第二相粒子破碎严重,尺寸分布不均匀性增加。

关键词

曲母线锥筒形件 内旋压 退火/淬火 小端起旋 有限元模拟 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    MUSIC O, ALLWOOD J M, KAWAI K. A review of the mechanics of metal spinning [J]. Journal of Materials Processing Tech, 2010, 210(1): 3–23. DOI:  https://doi.org/10.1016/jjmatprotec.2009.08.021. CrossRefGoogle Scholar
  2. [2]
    WUEST H, BOMMER L, HUBER A M, GOLL D, WEISSGAERBER T. Preparation of nanocrystalline Ce1−xSmx (Fe,Co)11 Ti by melt spinning and mechanical alloying [J]. Journal of Magnetism & Magnetic Materials, 2017, 428: 194–197. DOI:  https://doi.org/10.1016/j.jmmm.2016.12.036.CrossRefGoogle Scholar
  3. [3]
    HAN Z R, FAN Z J, XIAO Y, JIA Z. A research on thickness distribution of oblique cone in dieless shear spinning [J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9–12): 2901–2912. DOI:  https://doi.org/10.1007/s00170-016-9565-5. CrossRefGoogle Scholar
  4. [4]
    YANG M, ZHANG L, HAN X S, CHENG F L. Two-stage stochastic approach for spinning reserve allocation in dynamic economic dispatch [J]. Journal of Central South University, 2014, 21(2): 577–586. DOI:  https://doi.org/10.1007/s11771-014-1976-6. CrossRefGoogle Scholar
  5. [5]
    HE W, WENCHEN X, DEBIN S, WU H, XU W C, SHAN D B, JIN B C. An extended GTN model for low stress triaxiality and application in spinning forming [J]. Journal of Materials Processing Technology, 2019, 263: 112–128. DOI:  https://doi.org/10.1016/jjmatprotec.2018.07.032.CrossRefGoogle Scholar
  6. [6]
    LI H W, YAO X, YAN S L, HE J Z, ZHAN M, HUANG L. Analysis of forming defects in electromagnetic incremental forming of a large-size thin-walled ellipsoid surface part of aluminum alloy [J]. Journal of Materials Processing Technology, 2018, 255: 703–715. DOI:  https://doi.org/10.1016/j.jmatprotec.2018.01.024.CrossRefGoogle Scholar
  7. [7]
    LUO B F, LI X H, ZHANG X, LUO Y Z. Drum instability of thinning spinning ultrathin-walled tubes with large diameter-to-thickness ratio [J]. Journal of Central South University, 2015, 22(7): 2456–2462. DOI:  https://doi.org/10.1007/s11771-015-2773-6. CrossRefGoogle Scholar
  8. [8]
    YANG He, ZHAN Mei, LI Tian, WANG Qiao-ling. Advances in spinning of aluminum alloy large-sized complicated thin-walled shells [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2534–2550. DOI:  https://doi.org/10.1007/s12598-011-0191-y.(in Chinese)Google Scholar
  9. [9]
    RENTSCH B, MANOPULO N, HORA P. Numerical modelling, validation and analysis of multi-pass sheet metal spinning processes [J]. International Journal of Material Forming, 2017, 10(4): 641–651. DOI:  https://doi.org/10.1007/s12289-016-1308-5. CrossRefGoogle Scholar
  10. [10]
    WANG Z, MA S. Analysis of thin-walled shells with inner ribs formed by inner spinning technology [J]. Materials Research Innovations, 2016, 19(5): 101–105. DOI:  https://doi.org/10.1179/1432891715z.0000000001343. Google Scholar
  11. [11]
    WATSON M, LONG H. Wrinkling failure mechanics in metal spinning [J]. Procedia Engineering, 2014, 81: 2391–2396. DOI:  https://doi.org/10.1016/j.proeng.2014.10.339. CrossRefGoogle Scholar
  12. [12]
    HENKENJOHANN N, GÖBEL R, KLEINER M, KUNERT J. An adaptive sequential procedure for efficient optimization of the sheet metal spinning process [J]. Quality & Reliability Engineering International, 2010, 21(5): 439–455. DOI:  https://doi.org/10.1002/qre.732. CrossRefGoogle Scholar
  13. [13]
    GAN T, YU Zhong-qi, ZHAO Y X, LAI X M. Effects of backward path parameters on formability in conventional spinning of aluminum hemispherical parts [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 328–339. DOI:  https://doi.org/10.1016/S1003-6326(18)64666-7. CrossRefGoogle Scholar
  14. [14]
    SONG X F. Forming mechanism of defects in spinning of large complicated thin-wall aluminum alloy shells [J]. Journal of Plasticity Engineering, 2013, 20(1): 31–36. DOI:  https://doi.org/10.3969/j.issn.1007-2012.2013.01.007. Google Scholar
  15. [15]
    LI Y, WANG J, LU G D, PAN G J. A numerical study of the effects of roller paths on dimensional precision in die-less spinning of sheet metal [J]. Journal of Zhejiang University A, 2014, 15(6): 432–446. DOI:  https://doi.org/10.1631/jzus.A1300405. CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of EducationYanshan UniversityQinhuangdaoChina
  2. 2.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  3. 3.Hebei Construction Material Vocational and Technical CollegeQinhuangdaoChina

Personalised recommendations