Advertisement

Journal of Central South University

, Volume 26, Issue 12, pp 3295–3304 | Cite as

Preparation of defect free ceramic/Ti composite membranes by surface modification and in situ oxidation

  • Dong-qiang Zhang (张栋强)Email author
  • Ping Yang (杨平)
  • Jian-yang Wu (吴见洋)
  • Jing Zhao (赵静)
  • Yan-an Chen (陈彦安)
Article

Abstract

Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support, in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes on this basis. In situ oxidation conditions experimental results show that the best condition for preparing the TiO2-Al2O3/Ti composite membrane is under 800 °C for 2 h, and the microstructure and pore sizes of the TiO2-Al2O3/Ti composite membranes are affected obviously. The thickness and composition of the TiO2/Ti composite membranes are determined by SEM and XRD completely. The pore size distribution of the composite membrane is measured by bubble pressure method, the most probable aperture is about 3.12 µm, while the average pore size of defect free TiO2-Al2O3/Ti is about 3.23 µm. After ultrasonic treatment, the slight weight change of membranes reveals no observable change, which indicates that TiO2-Al2O3/Ti composite membranes maintain a good stability.

Key words

porous Ti ceramic TiO2 layer in situ oxidation composite membrane surface modification 

表面改性和原位氧化法制备无缺陷陶瓷/Ti 复合膜

摘要

本文采用Al2O3 陶瓷粉末对多孔金属Ti 载体表面的大孔缺陷进行修饰,在此基础上采用原位氧 化法制备了无缺陷陶瓷/Ti 复合膜。结果表明,制备的陶瓷/Ti 复合膜的最佳工艺条件为氧化温度 800 °C、氧化时间2 h,随着氧化温度升高和氧化时间的延长,陶瓷/Ti 复合膜的表面结构和孔径发生 明显变化。采用SEM 和XRD 测定了所制备陶瓷/Ti 复合膜的表面形貌、膜厚度和组成变化。通过气 体泡压法测量了复合膜的孔径分布,所制备的陶瓷/Ti 复合膜的最可几孔径约为3.12 μm,平均孔径约 为 3.23 μm。经超声处理后,复合膜的质量无明显变化,表明所制备的陶瓷/Ti 复合膜具有良好的稳定 性。

关键词

多孔Ti 支撑体 陶瓷 TiO2 膜层 原位氧化 复合膜 表面修饰 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    CHEN Fang-lin, FANG Shu-min, BRINKMAN K S. Chemically stable ceramic-metal composite membrane for hydrogen separation: USA, US 9687775 B2 [P]. 2017-06-27.Google Scholar
  2. [2]
    NOVIKOV V I, SHARAPAEV A I, PETUNIN A B, MURADOVA A G. An increase in abrasive resistance of composite metal ceramic membranes with selective layers based on oxide ceramics [J]. Theoretical Foundations of Chemical Engineering, 2016, 50(5): 827–830. DOI:  https://doi.org/10.1134/S0040579516050195. CrossRefGoogle Scholar
  3. [3]
    NOVIKOV V I, SHARAPAEV A I, KOROSTYLEY D A, KUZ’MIN A V. Preparation of metal-ceramic membranes based on the powder of titanium and titanium dioxide [J]. Theoretical Foundations of Chemical Engineering, 2016, 50(5): 822–826. DOI:  https://doi.org/10.1134/S0040579516050183. CrossRefGoogle Scholar
  4. [4]
    SUKANTA C, md RUSHDIE I I, AMIT S, RAMACHANDRA L S, REID S R. A computational framework for modeling impact induced damage in ceramic and ceramic-metal composite structures [J]. Composite Structures, 2017, 164: 263–276. DOI:  https://doi.org/10.1016/j.compstruct.2016.12.064. CrossRefGoogle Scholar
  5. [5]
    BOWKER M, JAMES D, STONE P, PERKINS N, MILLARD L, GREAVES J, DICKINONS A. Catalysis at the metal-support interface: Exemplified by the photocatalytic reforming of methanol on Pd/TiO2 [J]. Journal of Catalysis, 2003, 217(2): 427–433. DOI:  https://doi.org/10.1016/s0021-9517(03)00074-5. CrossRefGoogle Scholar
  6. [6]
    MA Y H, AKIS B C, AYTHURK M E, GUAZZONE F. Characterization of intermetallic diffusion barrier and alloy formation for Pd/Cu and Pd/Ag porous stainless steel composite membranes [J]. Industrial & Engineering Chemistry Research, 2004, 43(12): 2936–2945. DOI:  https://doi.org/10.1021/ie034002e. CrossRefGoogle Scholar
  7. [7]
    POLFUS J M, XING W, FONTAINE M L, DENONVILLE C, HENRIKSEN P P, BREDESEN R. Hydrogen separation membranes based on dense ceramic composites [J]. Journal of Membrane Science, 2015, 479: 39–45. DOI:  https://doi.org/10.1016/j.memsci.2015.12.054. CrossRefGoogle Scholar
  8. [8]
    MONTALEONE D, MERCADELLI E, GONDOLINI A, PINASCO P, SANSON A. On the compatibility of dual phase BaCe0.65 Zr0.2 Y0.15 O3-based membrane for hydrogen separation application [J]. Ceramics International, 2017: S0272884217308416. DOI:  https://doi.org/10.1016/j.ceramint.2017.05.039. CrossRefGoogle Scholar
  9. [9]
    LANGE R S A D, HEKKINK J H A, KEIZER K, BURGGRAAF A A. Formation and characterization of supported microporous ceramic membranes prepared by sol-gel modification techniques [J]. Journal of Membrane Science, 2017, 99(1): 57–75. DOI:  https://doi.org/10.1016/0376-7388(94)00206-E. CrossRefGoogle Scholar
  10. [10]
    ELGAMOUZ A, TIJANI N. From a naturally occurring material (clay mineral) to the production of porous ceramic membranes [J]. Microporous & Mesoporous Materials, 2018, 271: 52–58. DOI:  https://doi.org/10.1016/j.micromeso.2018.05.030. CrossRefGoogle Scholar
  11. [11]
    NGUYEN H Q, DEPORTER D A, PILLIAR R M, VALIQUETTE N, YAKUBOVICH R. The effect of sol-gel formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants [J]. Biomaterials, 2004, 25(5): 865–876. DOI:  https://doi.org/10.1016/s0142-9612(03)00607-0. CrossRefGoogle Scholar
  12. [12]
    LI Jun, YU Hui, SHI Qing-nan, LIU Li-gang, REN Wan-bo. Hot deformation behavior of pure titanium and its application in hot sheet finish rolling [J]. Journal of Central South University: Science and Technology, 2016, 47(6): 1889–1895. DOI:  https://doi.org/10.11817/j.issn.1672-7207.2016.06.010.(in Chinese)Google Scholar
  13. [13]
    WEN Yu-hui, ZHU Guo-ming, DAI Si-yu, KANG Yong-lin. Effect of Ti on microstructure and strengthening behavior in press hardening steels [J]. Journal of Central South University: 2017, 24(10): 2215–2221.CrossRefGoogle Scholar
  14. [14]
    LI Liang-hao, HUANG Zhuang-peng, FAN Xiao-xiao, ZHANG Zhen, DOU Rong-ni, WEN Shu-long, CHEN Yuan, CHEN Yuan-cai, HU Yong-you. Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA [J]. Electrochimica Acta, 2017, 231: 354–362. DOI:  https://doi.org/10.1016/j.electacta.2017.02.072. CrossRefGoogle Scholar
  15. [15]
    METIKOŠ-HUKOVIĆ M, TKALČEC E, KWOKAL A, PILJAC J. An in vitro study of Ti and Ti-alloys coated with sol-gel derived hydroxyapatite coatings [J]. Surface & Coatings Technology, 2003, 165(1): 40–50. DOI:  https://doi.org/10.1016/s0257-8972(02)00732-6. CrossRefGoogle Scholar
  16. [16]
    LV Dong-sheng, XU Jiu-hua, DING Wen-feng, FU Yu-can, YANG Chang-yong, SU Hong-hua. Tool wear in milling Ti40 burn-resistant titanium alloy using pneumatic mist jet impinging cooling [J]. Journal of Materials Processing Tech, 2016, 229: 641–650. DOI:  https://doi.org/10.1016/jjmatprotec.2015.10.020. CrossRefGoogle Scholar
  17. [17]
    JIANG Dian-lu, ZHANG Shan-qing, ZHAO Hui-jun. Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases [J]. Environmental Science & Technology, 2007, 41(1): 303–308. DOI:  https://doi.org/10.1021/es061509i. CrossRefGoogle Scholar
  18. [18]
    BAGHERI S, HIR Z A M, YOUSEFI A T, HAMID S B A. Progress on mesoporous titanium dioxide: synthesis, modification and applications [J]. Microporous & Mesoporous Materials, 2015, 218: 206–222. DOI:  https://doi.org/10.1016/j.micromeso.2015.05.028. CrossRefGoogle Scholar
  19. [19]
    YONG Zhao, ZHANG Xin-tong, ZHAI Jin, HE Jin-ling, JIANG Lei, LIU Zhao-yue, NISHIMOTO S, MURAKARMI T, FUJISHIMA A, ZHU Dao-ben. Enhanced photocatalytic activity of hierarchically micro/nano-porous TiO2 films [J]. Applied Catalysis B-Environmental, 2008, 83(1): 24–29. DOI:  https://doi.org/10.1016/j.apcatb.2008.01.035. Google Scholar
  20. [20]
    CHOI H, SOFRANKO A C, DIONYSIOU D D. Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction [J]. Advanced Functional Materials, 2010, 16(8): 1067–1074. DOI:  https://doi.org/10.1002/adfm.200500658. CrossRefGoogle Scholar
  21. [21]
    PARK J H, KIM S, BARD A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solarwater splitting [J]. Nano Lett, 2006, 6(1): 24–28. DOI:  https://doi.org/10.1021/nl051807y. CrossRefGoogle Scholar
  22. [22]
    DU Zhi-ming, HAN Zhi-yue, YAO Qian, ZHANG Ying-hao. Research progress of titanium dioxide anode in dye-sensitized solar cells [J]. Transactions of Beijing Institute of Technology, 2015, 35(2): 111–117. DOI:  https://doi.org/10.15918/j.tbit1001-0645.2015.02.001. Google Scholar
  23. [23]
    CHEN Yong-sheng, CRITTENDEN, J C, HACKNEY, S, SUTTER, L, HAND D W. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst [J]. Environmental Science & Technology, 2005, 39(5): 1201–1208. DOI:  https://doi.org/10.1021/es049252g. CrossRefGoogle Scholar
  24. [24]
    GONG Qing, YIN Li-song, GUO Zhi-bo, YANG Su-yu, AN Ke-yun. Titanium oxide nanotube arrays prepared by anodic oxidation method and photocatalytic degradation of chloramine phosphorus [J]. Journal of Central South University: Science and Technology, 2011, 42(11): 3270–3276. (in Chinese)Google Scholar
  25. [25]
    ZHU Jin, FAN Yi-qun, XU Nan-ping. Modified dip-coating method for preparation of pinhole-free ceramic membrane [J]. Journal of Membrane Science, 2011, 367(1, 2): 14–20. DOI:  https://doi.org/10.1016/j.memsci.2010.10.024. CrossRefGoogle Scholar
  26. [26]
    UCHIKOSHI T, KREETHAWATE L, MATSUNAGA C. Fabrication of ceramic membranes on porous ceramic supports by electrophoretic deposition [J]. Advances in Applied Ceramics, 2014, 113(1): 3–7. DOI:  https://doi.org/10.1179/1743676113Y.0000000111. CrossRefGoogle Scholar
  27. [27]
    ZHANG Xiao-yu, ZHANG Bing, WU Yong-hong, WANG Tong-hua, QIU Jie-shan. Preparation and characterization of a diatomite hybrid microfiltration carbon membrane for oily wastewater treatment [J]. Journal of the Taiwan Institute of Chemical Engineers, 2018: S187610701830258X. DOI:  https://doi.org/10.1016/j.jtice.2018.04.035. CrossRefGoogle Scholar
  28. [28]
    GESTEL V T, SEBOLD D, MEULENBERG W A, BRAM M, BUCHKREME H P. Manufacturing of new nano-structured ceramic metallic composite mieroporous membranes consisting of ZrO2, Al2O3, TiO2 and stainless steel [J]. Solid State Ionics, 2008, 179: 1360–1366. DOI:  https://doi.org/10.1016/j.ssi.2008.02.046. CrossRefGoogle Scholar
  29. [29]
    MEULENBER W A, MERTENS J, BRAM M, BUCHKREME H P, STÖVER D. Graded porous titania membranes for microfiltration [J]. Journal of the European Ceramic Society, 2006, 26: 449–454. DOI:  https://doi.org/10.1016/j.jeurceramsoc.2005.06.035. CrossRefGoogle Scholar
  30. [30]
    ZHANG Dong-qiang, WU Jian-yang, LI Bo, FAN Yi-qun. Preparation of ceramic membranes on Ti-Al alloy supports by an in-situ oxidation method [J]. Journal of Membrane Science, 2015, 476: 554–560. DOI:  https://doi.org/10.1016/j.memsci.2014.10.053. CrossRefGoogle Scholar
  31. [31]
    WU Ya-hui, LONG M, CAI Wei-min, DAI Si-di, CHEN Chao, WU De-yong, BAI Jing. Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate [J]. Nanotechnology, 2009, 20(18): 185703. DOI:  https://doi.org/10.1088/0957-4484/20/18/185703. CrossRefGoogle Scholar
  32. [32]
    ZHANG Dong-qiang, ZHOU Shou-yong, FAN Yi-qun, XU Nan-ping, HE Yue-hui. Preparation of dense Pd composite membranes on porous Ti-Al alloy supports by electroless plating [J]. Journal of Membrane Science, 2012, 387(1): 24–29. DOI:  https://doi.org/10.1016/j.memsci.2011.10.004. CrossRefGoogle Scholar
  33. [33]
    YU Jian, HU Xiao-juan, HUANG Yan. A modification of the bubble-point method to determine the pore-mouth size distribution of porous materials [J]. Separation & Purification Technology, 2010, 70(3): 314–319. DOI:  https://doi.org/10.1016/j.seppur.2009.10.013. CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Petrochemical TechnologyLanzhou University of TechnologyLanzhouChina

Personalised recommendations