Advertisement

Journal of Central South University

, Volume 26, Issue 12, pp 3213–3224 | Cite as

Promotion of conversion activity of flue gas desulfurization gypsum into α-hemihydrate gypsum by calcination-hydration treatment

  • Qing-jun Guan (管青军)
  • Wei Sun (孙伟)Email author
  • Chang-ping Guan (官长平)
  • Wei-jian Yu (余伟健)Email author
  • Xiang-nan Zhu (朱向楠)
  • Sultan Ahmed Khoso
  • Ping Wang (王平)
  • Wen-qing Peng (彭文庆)
Article
  • 4 Downloads

Abstract

The massive accumulation of flue gas desulfurization (FGD) gypsum produced in the wet limestone-gypsum flue gas desulfurization process not only encroaches on lands but also causes serious environmental pollution. The preparation of α-hemihydrate gypsum (α-HH) is an important way to achieve high-value utilization of FGD gypsum. Although the glycerol-water solution approach can be used to produce α-HH from FGD gypsum under mild conditions, the transition is kinetically unfavorable in the mixed solution. Here, an easy pretreatment was used to activate FGD gypsum by calcination and hydration to readily complete the transition. The pretreatment deteriorated the crystallinity of FGD gypsum and caused it to form small irregular flaky crystals, which dramatically increased the specific surface area. Additionally, most of the organics adsorbed onto FGD gypsum surfaces were removed after pretreatment. The poor crystallinity, increased specific surface area, and elimination of organics adsorbed onto crystal surfaces effectively improved the conversion activity of FGD gypsum, thereby promoting dihydrate gypsum (DH) dissolution and α-HH nucleation. Overall, the phase transition of FGD gypsum to α-HH is facilitated.

Key words

flue gas desulfurization gypsum α-hemihydrate gypsum calcination-hydration treatment dissolution surface characteristics 

煅烧-水化处理提高脱硫石膏转化为α-半水石膏的相变活性

摘要

湿法石灰石-石膏烟气脱硫过程中产生的脱硫石膏的大量堆积不仅会浪费土地而且会对周边环境造成严重污染. 制备 α-半水石膏是高附加值利用脱硫石膏的重要途径. 目前, 常压甘油-水溶液法被认为是一种制备 α-半水石膏的优良方法, 但是在这种溶液体系中二水石膏转化效率不高. 用煅烧-水化预处理方法活化脱硫石膏使其能够比较容易地完成相变转化. 预处理后脱硫石膏的结晶性变差并形成细碎的无规则薄片状晶体, 这大幅度地提高了脱硫石膏的比表面积. 另外, 预处理还将大部分吸附在脱硫石膏表面的有机物去除. 结晶性变差、比表面积提高以及表面有机物的消除大幅度地提高了脱硫石膏的相变反应活性, 有利于二水石膏的溶解和α-半水石膏的成核结晶,最终促进脱硫石膏向 α-半水石膏的转化.

关键词

脱硫石膏 α-半水石膏 煅烧-水化预处理 溶解 表面特性 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    TANG Ming-liang, LI Xue-run, SHEN Yu-sheng, SHEN Xiao-dong. Kinetic model for calcium sulfate α-hemihydrate produced hydrothermally from gypsum formed by flue gas desulfurization [J]. Journal of Applied Crystallography, 2015, 48(3): 827–835. DOI:  https://doi.org/10.1107/S1600576715007141.CrossRefGoogle Scholar
  2. [2]
    GUAN Bao-hong, YANG Liu-chun, WU Zhong-biao, SHEN Zhuo-xian, MA Xian-fa, YE Qing-qing. Preparation of α-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions [J]. Fuel, 2009, 88(7): 1286–1293. DOI:  https://doi.org/10.1016/j.fuel.2009.01.004.CrossRefGoogle Scholar
  3. [3]
    ZHU Xiang-nan, NIE Chun-chen, ZHANG Hao, LYU Xian-jun, QIU Jun, LI Lin. Recovery of metals in waste printed circuit boards by flotation technology with soap collector prepared by waste oil through saponification [J]. Waste Management, 2019, 89: 21–26. DOI:  https://doi.org/10.1016/j.wasman.2019.03.061.CrossRefGoogle Scholar
  4. [4]
    COMBE E C, SMITH D C. Studies on the preparation of calcium sulphate hemihydrate by an autoclave process [J]. Journal of Applied Chemistry, 2007, 18(10): 307–312. DOI:  https://doi.org/10.1002/jctb.5010181005.CrossRefGoogle Scholar
  5. [5]
    KOSTIC-PULEK A, MARINKOVIC S, POPOV S, DJURICIC M, DJINOVIC J. The treatment of gypsum as a product of the flue gas desulphurization process [J]. Ceramics Silikaty, 2005, 49(2): 115–119.Google Scholar
  6. [6]
    SHEN Zhuo-xian, GUAN Bao-hong, FU Hai-lu, YANG Liu-chun. Effect of potassium sodium tartrate and sodium citrate on the preparation of α-calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution [J]. Journal of the American Ceramic Society, 2009, 92(12): 2894–2899. DOI:  https://doi.org/10.1111/j.1551-2916.2009.03330.x.CrossRefGoogle Scholar
  7. [7]
    ALFRED Z, IVAN O, FELICIA T, KATARINA B. Autoclave-free formation of α-hemihydrate gypsum [J]. Journal of the American Ceramic Society, 1991, 74(5): 1117–1124. DOI:  https://doi.org/10.1111/j.1151-2916.1991.tb04351.x.CrossRefGoogle Scholar
  8. [8]
    GUAN Bao-hong, JIANG Guang-ming, FU Hai-lu, YANG Li, WU Zhong-biao. Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non-electrolyte glycerol-water solution under mild conditions [J]. Industrial and Engineering Chemistry Research, 2011, 50(23): 13561–13567. DOI:  https://doi.org/10.1021/ie201040y.CrossRefGoogle Scholar
  9. [9]
    GUAN Qing-jun, SUN Wei, HU Yue-hua, YIN Zhi-gang, GUAN Chang-ping. Synthesis of α-CaSO4·0.5H2O from flue gas desulfurization gypsum regulated by C4H4O4Na2·6H2O and NaCl in glycerol-water solution [J]. RSC Advances, 2017, 7(44): 27807–27815. DOI:  https://doi.org/10.1039/C7RA03280C.CrossRefGoogle Scholar
  10. [10]
    GUAN Qing-jun, HU Yue-hua, TANG Hong-hu, SUN Wei, GAO Zhi-yong. Preparation of α-CaSO4·½H2O with tunable morphology from flue gas desulphurization gypsum using malic acid as modifier: A theoretical and experimental study [J]. Journal of Colloid and Interface Science, 2018, 530: 292–301. DOI:  https://doi.org/10.1016/j.jcis.2018.06.068.CrossRefGoogle Scholar
  11. [11]
    GUAN Qing-jun, SUN Wei, HU Yue-hua, YIN Zhi-gang, ZHANG Chen-hu, GUAN Chang-ping, ZHU Xiang-nan, AHMED K S. Simultaneous control of particle size and morphology of α-CaSO4·½H2O with organic additives [J]. Journal of the American Ceramic Society, 2019, 102(5): 2440–2450. DOI:  https://doi.org/10.1111/jace.16177.Google Scholar
  12. [12]
    YU Wei-jian, LIU Fang-fang. Stability of close chambers surrounding rock in deep and comprehensive control technology [J]. Advances in Civil Engineering, 2018, 2018: 18. DOI:  https://doi.org/10.1155/2018/6275941.Google Scholar
  13. [13]
    JIA Cai-yun, CHEN Qiao-shan, ZHOU Xu, WANG Hao, JIANG Guang-ming, GUAN Bao-hong. Trace NaCl and Na2EDTA mediated synthesis of α-calcium sulfate hemihydrate in glycerol-water solution [J]. Industrial and Engineering Chemistry Research, 2016, 55(34): 9189–9194. DOI:  https://doi.org/10.1021/acs.iecr.6b02064.CrossRefGoogle Scholar
  14. [14]
    GUANG Zhan, GUO Zhan-cheng. Water leaching kinetics and recovery of potassium salt from sintering dust [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(12): 3770–3779. DOI:  https://doi.org/10.1016/S1003-6326(13)62928-3.CrossRefGoogle Scholar
  15. [15]
    TANG Hong-hu, ZHAO Li-hua, SUN Wei, HU Yue-hua, HAN Hai-sheng. Surface characteristics and wettability enhancement of respirable sintering dust by nonionic surfactant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509: 323–333. DOI:  https://doi.org/10.1016/j.colsurfa.2016.09.041.CrossRefGoogle Scholar
  16. [16]
    WU Gen-shui, YU Wei-jian, LIU Ze, TANG Zhu. Failure law and mechanism of the rock-loose coal composite specimen under combined loading rate [J]. Advances in Civil Engineering, 2018, 2018: 10–20. DOI:  https://doi.org/10.1155/2018/2482903.Google Scholar
  17. [17]
    FREYER D, VOIGT W. Crystallization and phase stability of CaSO4 and CaSO4-based salts [J]. Monatshefte fur Chemie, 2003, 134(5): 693–719. DOI:  https://doi.org/10.1007/s00706-003-0590-3.CrossRefGoogle Scholar
  18. [18]
    JIANG Guang-ming, FU Hai-lu, SAVINO Keith, QIAN Jia-jing, WU Zhong-biao, GUAN Bao-hong. Nonlattice cation-SO42− ion pairs in calcium sulfate hemihydrate nucleation [J]. Crystal Growth and Design, 2013, 13(13): 5128–5134. DOI:  https://doi.org/10.1021/cg401361u.CrossRefGoogle Scholar
  19. [19]
    JIANG Guang-ming, LI Jun-xi, NIE Yun-liang, ZHANG Sen, DONG Fan, GUAN Bao-hong, LV Xiao-shu. Immobilizing water into crystal lattice of calcium sulfate for its separation from water-in-oil emulsion [J]. Environmental Science and Technology, 2016, 50(14): 7650–7657. DOI:  https://doi.org/10.1021/acs.est.6b01152.CrossRefGoogle Scholar
  20. [20]
    JIANG Guang-ming, FU Wen-yang, WANG Yu-zheng, LIU Xiao-ying, ZHANG Yu-xin, DONG Fan, ZHANG Zhi-yong, ZHANG Xian-ming, HUANG Yu-ming, ZHANG Sen. Calcium sulfate hemihydrate nanowires: One robust material in separation of water from water-in-oil emulsion [J]. Environmental Science and Technology, 2017, 51(18): 10519–10525. DOI:  https://doi.org/10.1021/acs.est.7b02901.CrossRefGoogle Scholar
  21. [21]
    HOU Si-chao, WANG Jing, WANG Xiao-xue, CHEN Hao-yuan, XIANG Lan. Effect of Mg2+ on hydrothermal formation of α-CaSO4·0.5H2O whiskers with high aspect ratios [J]. Langmuir, 2014, 30(32): 9804–9810. DOI:  https://doi.org/10.1021/la502451f.CrossRefGoogle Scholar
  22. [22]
    RU Xiao-hong, MA Bao-guo, HUANG Jian, HUANG Yun. Phosphogypsum transition to α-calcium sulfate hemihydrate in the presence of omongwaite in NaCl solutions under atmospheric pressure [J]. Journal of the American Ceramic Society, 2012, 95(11): 3478–3482. DOI:  https://doi.org/10.1111/j.1551-2916.2012.05429.x.CrossRefGoogle Scholar
  23. [23]
    BISRAT M, NYSTROM C. Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions [J]. International Journal of Pharmaceutics, 1988, 47(1–3): 223–231. DOI:  https://doi.org/10.1016/0378-5173(88)90235-9.CrossRefGoogle Scholar
  24. [24]
    NYSTROM C, BISRAT M. Coulter counter measurements of solubility and dissolution rate of sparingly soluble compounds using micellar solutions [J]. Journal of Pharmacy and Pharmacology, 1986, 38(6): 420–425. DOI:  https://doi.org/10.1111/j.2042-7158.1986.tb04604.x.CrossRefGoogle Scholar
  25. [25]
    BLAGDEN N, DE M M, GAVAN P, YORK P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates [J]. Advanced Drug Delivery Reviews, 2007, 59(7): 617–630. DOI:  https://doi.org/10.1016/j.addr.2007.05.011.CrossRefGoogle Scholar
  26. [26]
    FATU D. Kinetics of gypsum dehydration [J]. Journal of Thermal Analysis and Calorimetry, 2001, 65(1): 213–220. DOI:  https://doi.org/10.1023/A:1011597106589.CrossRefGoogle Scholar
  27. [27]
    DANTAS H F, MENDES R A S, PINHO R D, SOLEDADE L E B, PASKOCIMAS C A, LIRA B B, SCHWARTZ M O E, SOUZA A G, SANTOS I M G. Characterization of gypsum using TMDSC [J]. Journal of Thermal Analysis and Calorimetry, 2007, 87(3): 691–695. DOI:  https://doi.org/10.1007/s10973-006-7733-9.CrossRefGoogle Scholar
  28. [28]
    LOU Wen-bin, GUAN Bao-hong, WU Zhong-biao. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis [J]. Journal of Thermal Analysis and Calorimetry, 2011, 104(2): 661–669. DOI:  https://doi.org/10.1007/s10973-010-1100-6.CrossRefGoogle Scholar
  29. [29]
    GUAN Bao-hong, MA Xian-fa, WU Zhong-biao, YANG Liu-chun, SHEN Zhuo-xian. Crystallization routes and metastability of α-calcium sulfate hemihydrate in potassium chloride solutions under atmospheric pressure [J]. Journal of Chemical and Engineering Data, 2009, 54(3): 719–725. DOI:  https://doi.org/10.1021/je8003222.CrossRefGoogle Scholar
  30. [30]
    LI He, SHI Shi-liang, LU Jie-xin, YE Qing, LU Yi, ZHU Xiang-nan. Pore structure and multifractal analysis of coal subjected to microwave heating [J]. Powder Technology, 2019, 346: 97–108. DOI:  https://doi.org/10.1016/j.powtec.2019.02.009.CrossRefGoogle Scholar
  31. [31]
    LI He, SHI Shi-liang, LIN Bai-quan, LU Jie-xin, LU Yi, YE Qing, WANG Zheng, HONG Yi-du, ZHU Xiang-nan. A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal [J]. Fuel Processing Technology, 2019, 189: 49–61. DOI:  https://doi.org/10.1016/j.fuproc.2019.03.002.CrossRefGoogle Scholar
  32. [32]
    IVANOVSKI V, PETRUSEVSKI V M. On the origin of the splittings of the (SO42−) modes in the specular reflectance IR spectra of gypsum [J]. Journal of Molecular Structure, 2003, 650(1–3): 165–173. DOI:  https://doi.org/10.1016/S0022-2860(03)00150-9.CrossRefGoogle Scholar
  33. [33]
    GAO Zhi-yong, FAN Rui-ying, RALSTON J, SUN Wei, HU Yue-hua. Surface broken bonds: An efficient way to assess the surface behaviour of fluorite [J]. Minerals Engineering, 2019, 130: 15–23. DOI:  https://doi.org/10.1016/j.mineng.2018.09.024.CrossRefGoogle Scholar
  34. [34]
    LU Shuai-shuai, YUAN Zhi-tao, ZHANG Chen. Binding mechanisms of polysaccharides adsorbing onto magnetite concentrate surface [J]. Powder Technology, 2018, 340: 17–25. DOI:  https://doi.org/10.1016/j.powtec.2018.09.021.CrossRefGoogle Scholar
  35. [35]
    KONG B, GUAN B, YATES M Z, WU Z. Control of α-calcium sulfate hemihydrate morphology using reverse microemulsions [J]. Langmuir, 2012, 28(40): 14137–14142. DOI:  https://doi.org/10.1021/la302459z.CrossRefGoogle Scholar
  36. [36]
    SINHA M, RAMNA R V, SINHA S, BOSE G. Characterisation of ESP dust sample from sinter plant [J]. ISIJ International, 2010, 50(11): 1719–1721. DOI:  https://doi.org/10.2355/isijinternational.50.1719.CrossRefGoogle Scholar
  37. [37]
    LYU Fei, GAO Jian-de, SUN Ning, LIU Run-qing, SUN Xiao-dong, CAO Xue-feng, WANG Li, SUN Wei. Utilisation of propyl gallate as a novel selective collector for diaspore flotation [J]. Minerals Engineering, 2019, 131: 66–72. DOI:  https://doi.org/10.1016/j.mineng.2018.11.002.CrossRefGoogle Scholar
  38. [38]
    LU Yi, SHI Shi-liang, WANG Hai-qiao, TIAN Zhao-jun, YE Qing, NIU Hui-yong. Thermal characteristics of cement microparticle-stabilized aqueous foam for sealing high-temperature mining fractures [J]. International Journal of Heat and Mass Transfer, 2019, 131: 594–603. DOI:  https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.079.CrossRefGoogle Scholar
  39. [39]
    MAO Xiu-long, SONG Xing-fu, LU Gui-min, SUN Yu-zhu, XU Yan-xia, YU Jian-guo. Control of crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions by additives: Experimental and molecular dynamics simulation studies [J]. Industrial and Engineering Chemistry Research, 2015, 54(17): 4781–4787. DOI:  https://doi.org/10.1021/acs.iecr.5b00585.CrossRefGoogle Scholar
  40. [40]
    HAN Qiang, WANG Zong-hua, XIA Jian-fei, CHEN Sha, ZHANG Xiao-qiong, DING Ming-yu. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples [J]. Talanta, 2012, 101(22): 388–395. DOI:  https://doi.org/10.1016/j.talanta.2012.09.046.CrossRefGoogle Scholar
  41. [41]
    ZHAO Gui-xia, LI Jia-xing, REN Xue-mei, CHEN Chang-lun, WANG Xiang-ke. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management [J]. Environmental Science and Technology, 2011, 45(24): 10454–10462. DOI:  https://doi.org/10.1021/es203439v.CrossRefGoogle Scholar
  42. [42]
    ZHANG Xue-tong, SUI Zhu-yin, XU Bin, YUE Shu-fang, LUO Yun-jun, ZHAN Wan-chu, LIU Bin. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources [J]. Journal of Materials Chemistry, 2011, 21(18): 6494–6497. DOI:  https://doi.org/10.1039/C1JM10239G.CrossRefGoogle Scholar
  43. [43]
    GRAF N, YEGEN E, GROSS T, LIPPITZ A, WEIGEL W, KRAKERT S, TERFORT A, UNGER W E S. XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces [J]. Surface Science, 2009, 603(18): 2849–2860. DOI:  https://doi.org/10.1016/j.susc.2009.07.029.CrossRefGoogle Scholar
  44. [44]
    OXLEY J D, MDLELENI M M, SUSLICK K S. Hydrodehalogenation with sonochemically prepared Mo2C and W2C [J]. Catalysis Today, 2004, 88(3, 4): 139–151. DOI:  https://doi.org/10.1016/j.cattod.2003.11.010.CrossRefGoogle Scholar
  45. [45]
    LU Yi, SHI Shi-liang, YANG Fan, ZHANG Tian-yu, NIU Hui-yong, WANG Tao. Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries [J]. Journal of Alloys and Compounds, 2018, 767: 23–33. DOI:  https://doi.org/10.1016/j.jallcom.2018.07.068.CrossRefGoogle Scholar
  46. [46]
    WU Qiu-hong, WENG Lei, ZHAO Yan-lin, GUO Bao-hua, LUO Tao. On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates [J]. Engineering Geology, 2019, 253: 94–110. DOI:  https://doi.org/10.1016/j.enggeo.2019.03.014.CrossRefGoogle Scholar
  47. [47]
    OSSOLA F, TOMASIN P, ZORZI C D, HABRA N E, CHIURATO M, FAVARO M. New calcium alkoxides for consolidation of carbonate rocks. Influence of precursors’ characteristics on morphology, crystalline phase and consolidation effects [J]. New Journal of Chemistry, 2012, 36(12): 2618–2624. DOI:  https://doi.org/10.1039/c2nj40708f.CrossRefGoogle Scholar
  48. [48]
    LIN Lei, BAI Yong-xiao, LI Yan-feng, YI Liu-xiang, YONG Yang, XIA Chun-gu. Study on immobilization of lipase onto magnetic microspheres with epoxy groups [J]. Journal of Magnetism and Magnetic Materials, 2009, 321(4): 252–258. DOI:  https://doi.org/10.1016/j.jmmm.2008.08.047.CrossRefGoogle Scholar
  49. [49]
    BAI Yong-xiao, LI Yan-feng, WANG Ming-tao. Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization [J]. Enzyme and Microbial Technology, 2006, 39(4): 540–547. DOI:  https://doi.org/10.1016/j.enzmictec.2005.08.041.CrossRefGoogle Scholar
  50. [50]
    ZHANG Ye, HU Yue-hua, SUN Ning, LIU Run-qing, WANG Zhen, WANG Li, SUN Wei. Systematic review of feldspar beneficiation and its comprehensive application [J]. Minerals Engineering, 2018, 128: 141–152. DOI:  https://doi.org/10.1016/j.mineng.2018.08.043.CrossRefGoogle Scholar
  51. [51]
    YU Yue-xian, MA Li-qiang, CAO Ming-li, LIU Qi. Slime coatings in froth flotation: A review [J]. Minerals Engineering, 2017, 114: 26–36. DOI:  https://doi.org/10.1016/j.mineng.2017.09.002.CrossRefGoogle Scholar
  52. [52]
    FU Hai-lu, GUAN Bao-hong, JIANG Guang-ming, YATES M Z, WU Zhong-biao. Effect of supersaturation on competitive nucleation of CaSO4 phases in a concentrated CaCl2 solution [J]. Crystal Growth and Design, 2017, 12(3): 1388–1394. DOI:  https://doi.org/10.1021/cg201493w.CrossRefGoogle Scholar
  53. [53]
    YANG Liu-chun, GUAN Bao-hong, WU Zhong-biao, MA Xian-fa. Solubility and phase transitions of calcium sulfate in KCl solutions between 85 and 100 °C [J]. Industrial and Engineering Chemistry Research, 2009, 48(16): 7773–7779. DOI:  https://doi.org/10.1021/ie900372j.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Resource Environment and Safety EngineeringHunan University of Science and TechnologyXiangtanChina
  2. 2.School of Mineral Processing and BioengineeringCentral South UniversityChangshaChina
  3. 3.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations