Advertisement

Journal of Central South University

, Volume 26, Issue 10, pp 2797–2813 | Cite as

Adomian decomposition method simulation of von Kármán swrling bioconvection nanofluid flow

  • M D ShamshuddinEmail author
  • S R Mishra
  • O Anwar Beg
  • A Kadir
Article
  • 10 Downloads

Abstract

The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk. It is known that the deformation of the disk is along the radial direction. In addition to that Stefan blowing is considered. The Buongiorno nanofluid model is taken care of assuming the fluid to be dilute and we find Brownian motion and thermophoresis have dominant role on nanoscale unit. The primitive mass conservation equation, radial, tangential and axial momentum, heat, nano-particle concentration and micro-organism density function are developed in a cylindrical polar coordinate system with appropriate wall (disk surface) and free stream boundary conditions. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical von Kármán and other transformations to render the boundary value problem into an ordinary differential system. The emerging 11th order system features an extensive range of dimensionless flow parameters, i.e., disk stretching rate, Brownian motion, thermophoresis, bioconvection Lewis number, unsteadiness parameter, ordinary Lewis number, Prandtl number, mass convective Biot number, Péclet number and Stefan blowing parameter. Solutions of the system are obtained with developed semi-analytical technique, i.e., Adomian decomposition method. Validation of the said problem is also conducted with earlier literature computed by Runge-Kutta shooting technique.

Keywords

nanofluids bioconvection rotating disk bioreactors von Kármán swirling flow Stefan blowing Adomian decomposition method (ADM) 

生物对流纳米流体流动的von Kármán 分解法模拟

摘要

本研究分析了纳米流体从旋转圆盘中流过时的三维黏性时变旋流生物对流。圆盘的变形沿径向 进行,同时考虑Stefan 吹气,通过对Buongiorno 纳米流体模型的分析,发现布朗运动和热泳动在纳 米尺度上起着主导作用。在适当的壁面(圆盘表面)和自由流边界条件下,建立了原始质量守恒方程、 径向动量、切向动量和轴向动量、热量、纳米粒子浓度和微生物密度函数。将这个高度非线性、强耦 合的非定常偏微分方程系统用经典的von Kármán 和其他变换进行归一化,从而将边值问题转化为一 个常微分系统。产生的11 阶系统包括多种无量纲流动参数,即生物对流Lewis 数、不稳定参数、普 通Lewis 数、Prandtl 数、质量对流Biot 数、Peclet 数、Stefan 吹气参数。利用先进的半解析方法得到 了系统的解,即Adomian 分解法。利用Runge-Kutta 拍摄技术计算的早期文献对上述问题进行了验证。

关键词

纳米流体 生物对流 磁盘旋转生物反应器 von Kármá 旋流 Stefan 吹气 Adomian 分解法 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    MA H T, ZHANG Y F, DENG N. Mass transfer characteristics from a rotating cylinder [C]// HEFAT 2008 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. Pretoria, South Africa, 2008.Google Scholar
  2. [2]
    MOHANTY A K, TAWFEK A A, PRASAD B V S S. Heat transfer from a rotating cylinder in crossflow [J]. Experimental Thermal and Fluid Science, 1995, 10: 54–61.Google Scholar
  3. [3]
    ANWAR BÉG O, PRASAD V R, VASU B, GORLA R S R. Computational modelling of magnetohydrodynamic convection from a rotating cone in orthotropic Darcian porous media [J]. Journal of Brazilian Society of Mechanical Science Engineering, 2017, 39: 2035–2054.Google Scholar
  4. [4]
    SUBHASHINI S V, TAKHAR H S, NATH G. Non-uniform mass transfer or wall enthalpy into a compressible flow over a rotating sphere [J]. Heat and Mass Transfer, 2007, 43(11): 1133–1141.Google Scholar
  5. [5]
    TAKHAR H S, WHITELAW M H. Higher order heat transfer from a rotating sphere [J]. Acta Mechanica, 1978, 30: 101–109.zbMATHGoogle Scholar
  6. [6]
    FRANCESCHINI E A, LACCONI G I, CORTI H R. Kinetics of hydrogen evolution reaction on nickel modified by spontaneous Ru deposition: A rotating disk electrode and impedance spectroscopy approach [J]. International Journal of Hydrogen Energy, 2016, 41(5): 3326–3338.Google Scholar
  7. [7]
    TANG T, LI K, YING D, SUN T, WANG Y, JAI J. High efficient aqueous-film rotating disk photocatalytic fuel cell (RDPFC) with triple functions: Cogeneration of hydrogen and electricity with dye degradation [J]. International Journal of Hydrogen Energy, 2014, 39(19): 10258–10266.Google Scholar
  8. [8]
    PEEV G, PESHAV D, NIKOLOVA A. Gas absorption in a thin liquid film flow on a horizontal rotating disk [J]. Heat and Mass Transfer, 2007, 43(8): 843–848.Google Scholar
  9. [9]
    KÁRMÁN T V. Uber laminare und turbulent Reibung [J]. ZAMM, 1921, 1: 233–252.zbMATHGoogle Scholar
  10. [10]
    GREENSPAN H. The theory of rotating fluids [M]. New York: Cambridge University Press, 1968.zbMATHGoogle Scholar
  11. [11]
    SHEVCHUK I V, Convective heat and mass transfer in rotating disk systems [M]. New York: Springer, 2009.zbMATHGoogle Scholar
  12. [12]
    GAMBARYAN-ROISMAN T, STEPHAN P. Hydrodynamics and heat transfer in a liquid film flowing over a spinning disk with specific wall topography [C]// ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. Edmonton, Alberta, Canada, 2011.Google Scholar
  13. [13]
    HELCIG C, WIESCHE S A D. Effect of Prandtl number on the heat transfer from a rotating disk: An experimental study [C]// ASME 2016 Heat Transfer Summer Conference. Washington DC, USA: ASME, 2016.Google Scholar
  14. [14]
    CHOI S U S, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian Flows [C]// American Society of Mechanical Engineers. New York, 1995: 99–105.Google Scholar
  15. [15]
    BUONGIORNO J. Convective transport in nanofluids [J]. Asme Journal of Heat Transfer, 2006, 128(3): 240–250.Google Scholar
  16. [16]
    DAS S K, CHOI S U S, YU W, PRADEEP T. Nanofluids: Science and Technology [M]. New York: John Wiley, 2007.Google Scholar
  17. [17]
    TURKYILMAZOGLU M, Nanofluid flow and heat transfer due to a rotating disk [J]. Computers & Fluids, 2014, 94: 139–146.MathSciNetzbMATHGoogle Scholar
  18. [18]
    HAYAT T, IMTIAZ M, ALSAEDI A, ALZAHRANI F. Effects of homogeneous-heterogeneous reactions in flow of magnetite-Fe3O4 nanoparticles by a rotating disk [J]. Journal of Molecular Liquids, 2016, 216: 845–855.Google Scholar
  19. [19]
    RAZA J, ROHINI A M, OMAR Z, AWAIS M. Heat and mass transfer analysis of MHD nanofluid flow in a rotating channel with slip effects [J]. Journal of Molecular Liquids, 2016, 219: 703–708.Google Scholar
  20. [20]
    CHAKRABORTY T, DAS K, KUNDU P K. Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganism with convective boundary conditions [J]. Alexandria Engineering Journal, 2016, 57(1): 61–71.Google Scholar
  21. [21]
    XUN S, ZHAO J, ZHENG L, ZHENG X. Bio convection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity [J]. International Journal of Heat and Mass Transfer, 2017, 111: 1001–1006.Google Scholar
  22. [22]
    ANWAR BÉG O, BASIR M F M, UDDIN M J, ISMAIL A I M. Numerical study of slip effects on asymmetric bio convective nanofluid flow in a porous microchannel with an expanding/contracting upper wall using Buongiorno’s model [J]. Journal of Mechanics in Medicine and Biology, 2017, 17(5): 17500591.Google Scholar
  23. [23]
    LI J J, LU H, RAEES A, ZHAO Q K. Unsteady mixed bio convection flow of a nanofluid between two contracting or expanding rotating discs [J]. Zeitschrift für Naturforschung A, 2017, 71(3): 1–12.Google Scholar
  24. [24]
    IMTIAZ M, HAYAT T, ALSAEDI A, AHMAD B. Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects [J]. International Journal of Heat and Mass Transfer, 2016, 101: 948–957.Google Scholar
  25. [25]
    HAYAT T, QAYYUM S, IMTIAZ M, ALZAHRANI F, ALSAEDI A. Partial slip effect in flow of magnetite-Fe3O4 nanoparticles between rotating stretchable disks [J]. Journal of Magnetism and Magnetic Materials, 2016, 413: 39–48.Google Scholar
  26. [26]
    HAYAT T, QAYYUM S, IMTIAZ M, ALZAHRANI F, ALSAEDI A. Radiative flow due to stretchable rotating disk with variable thickness [J]. Results in Physics, 2017, 7: 156–165.Google Scholar
  27. [27]
    AHMED N, ADNAN, MOHYUD-DIN U S T. Influence of shape factor on flow of magneto-nanofluid squeezed between parallel disk [J]. Alexandria Engineering Journal, 2017. DOI:  https://doi.org/10.1016/j.aej.2017.03.031. Google Scholar
  28. [28]
    MUSHTAQ A, MUSTAFA M. Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions [J]. Results in Physics, 2017, 7: 3137–3144.Google Scholar
  29. [29]
    CHEN H, CHEN J, GENG Y, CHEN K. Three-dimensional boundary layer flow over a rotating disk with power-law stretching in a nanofluid containing gyrotactic microorganisms [J]. Heat Transfer-Asian Research, 2017, 47(3): 569–582.DOI:  https://doi.org/10.1002/htj.21327.Google Scholar
  30. [30]
    LATIFF N A, UDDIN M J, ISMAIL A I M. Stefan blowing effect on bio convective flow of nanofluid over a solid rotating stretchable disk [J]. Propulsion and Power Research, 2016, 5(4): 267–278.Google Scholar
  31. [31]
    WATSON L T, WANG C Y. Deceleration of a rotating disk in a viscous fluid [J]. Physics of Fluids, 1979, 22: 2267–2275.zbMATHGoogle Scholar
  32. [32]
    SHAMSHUDDIN M D, ANWAR B EG O, SUNDER R AM M, KADIR A. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media [J]. Indian Journal of Physics, 2017, 92(2): 215–230.Google Scholar
  33. [33]
    ZOHRA F T, UDDIN M J, ISMAIL A I M, ANWAR B EG O, KADIR A. Anisotropic slip magneto-bio convection flow from a rotating cone to a nanofluid with Stefan blowing effects [J]. Chinese J Phys, 2017, 56(1): 432–448.Google Scholar
  34. [34]
    DANIEL Y S, DANIEL S K. Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homotopy analysis method [J]. Alexandria Engineering Journal, 2015, 54(3): 705–712.Google Scholar
  35. [35]
    BHATTI M M, SHAHID A, ANWAR B EG O, KADIR A. Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo-Christov heat flux model [M]. Neural Computing & Applic, 2017, 30(11): 3467–3478. DOI:  https://doi.org/10.1007/s00521-017-2933-8.Google Scholar
  36. [36]
    ADOMIAN G. Solving frontier problems in physics: The decomposition method [M]. Dordrecht, USA: Kluwer, 1994.zbMATHGoogle Scholar
  37. [37]
    HAQ F, SHAH, K, GHAUS U RRAHMAN, SHAHZAD M. Numerical solution of fractional order smoking model via Laplace Adomian decomposition method [J]. Alexandria English Journal, 2017, 57(2): 1061–1069. DOI:  https://doi.org/10.1016/j.aej.2017.02.015.Google Scholar
  38. [38]
    ANWAR B EG O, TRIPATHI D, SOCHI T, GUPTA P K. Adomian decomposition method (ADM) simulation of magneto-bio-tribological squeeze film with magnetic induction effects [J]. Journal of Mechanics Medicine Biology, 2015, 15: 1550072.Google Scholar
  39. [39]
    AHLERSTEN K. An introduction to MATLAB [M]. Bookboon Publishers, 2015.Google Scholar
  40. [40]
    EVANS D J. The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disc with uniform suction [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1969, 22(4): 467–485.zbMATHGoogle Scholar
  41. [41]
    FANG T, TAO H. unsteady viscous flow over a rotating stretchable disk with deceleration [J]. Communication in Nonlinear Science and Numerical Simulations, 2012, 17(12): 5064–5072.MathSciNetzbMATHGoogle Scholar
  42. [42]
    SIDDIQA S, GUL-E-HINA, BEGUM N, SALEEM S, HOSSAIN M A, GORLA R S R. Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone [J]. International Journal of Heat and Mass transfer, 2016, 101: 608–613.Google Scholar
  43. [43]
    SIDDIQA S, SULAIMAN M, HOSSAIN M A, ISLAM S, GORLA R S R. Gyrotactic bioconvection flow of a nanofluid past a vertical wavy surface [J]. International Journal of Thermal Sciences, 2016, 108: 244–250.Google Scholar
  44. [44]
    BEGUM N, SIDDIQA S, HOSSAIN M A. Nanofluid bioconvection with variable thermophysical properties [J]. Journal of Molecular Liquids, 2017, 231: 325–332.Google Scholar
  45. [45]
    SAINI S, SHARMA Y D. Analysis of onset of bio-thermal convection in a fluid containing gravitactic microorganism by the energy method [J]. Chinese Journal of Physics, 2018, 56(5): 2031–2038.MathSciNetGoogle Scholar
  46. [46]
    SAINI S, SHARMA Y D. Analysis of onset of bio-thermal convection in a fluid containing gravitactic microorganism by the energy method [J]. Chinese Journal of Physics, 2018, 56(5): 2031–2038.MathSciNetGoogle Scholar
  47. [47]
    SAINI S, SHARMA Y D. A bio-thermal convection in waterbased nanofluid containing gyrotactic microorganism: Effect of vertical throughflow [J]. Journal of Applied Fluid Mechanics, 2018, 11(4): 895–903.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsVaagdevi College of EngineeringWarangalIndia
  2. 2.Department of MathematicsSiksha ‘O’ Anusandhan Deemed to be UniversityBhubaneswarIndia
  3. 3.Department of Aeronautical and Mechanical EngineeringUniversity of SalfordManchesterEngland, UK

Personalised recommendations