Advertisement

Journal of Central South University

, Volume 26, Issue 10, pp 2688–2703 | Cite as

Characterization of carbon fibers recovered through mechanochemical-enhanced recycling of waste carbon fiber reinforced plastics

  • Antony Mutua Nzioka
  • Bernard Ouma Alunda
  • Cao-zheng Yan (鄢曹政)
  • Ye-Jin Sim
  • Myung-Gyun Kim
  • Bok-Young Yoon
  • Young-Ju KimEmail author
Article
  • 9 Downloads

Abstract

In this study, we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers. The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers. The reinforced plastics were recycled; the recycling efficiency was determined and the recovered fibers were sized using 1 wt% and 3 wt% concentration of (3-aminopropyl)triethoxysilane. We characterized the morphologies utilizing the electron spectroscopy for chemical analysis (ESCA), atomic force microscopy (AFM), FTIR-attenuated total reflection (ATR) spectroscopy and scanning electron microscopy (SEM). Although the surface of the fibers had no cracks, there was evidence of contaminations which affected the interfacial properties and the quality of the fibers. Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration. The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.

Key words

recycled carbon fibers fiber reinforced plastics mechanochemical process interfacial property surface morphology 

机械化学法回收废弃碳纤维增强塑料的表征

摘要

在本研究中,我们介绍了机械化学强化回收碳纤维的特性。本研究的目的是探讨改良的再生方 法对再生纤维界面性能的影响。对增强塑料进行了回收,测定了其回收效率,并用浓度分别为1%和 3% 的(3-氨丙基)三乙氧基硅烷对回收纤维进行了施胶。利用化学分析电子光谱(ESCA)、原子力显微 镜(AFM)、红外衰减全反射(ATR)光谱和扫描电子显微镜(SEM)对其形貌进行了表征。虽然纤维表面没 有裂纹,但有污染的迹象,影响了纤维的界面性能和质量。结果表明,随着施胶浓度的增加,再生纤 维和原生纤维的变化趋势相似。回收纤维具有很好的前景。

关键词

可回收碳纤维 纤维增强塑料 机械化学过程 界面质量 表面形态 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    HEDLUND-ÅSTRÖM A. Model for end of life treatment of polymer composite materials [D]. Stockholm: Royal Institute of Technology, 2005.Google Scholar
  2. [2]
    HEDLUND-ÅSTRÖM A, LUTTROPP C, REINOLDSSON P. Outline of guidelines for recycling and recovery for FRP composites [C]// HORWVATH I, XIROUCHAKIS P. 5th International Symposium on Tools and Methods for Concurrent Engineering (TMCE 2004). Lausanne, Switzerland: Mill press, 2004: 563–572.Google Scholar
  3. [3]
    NAKAGAWA M, KASUGA K, AOYAGI K, ISHIHARA K, IKEDA Y. CFRP recycling technology using depolymerization under ordinary pressure [C]// KIM H, WHISLER D, CHEN Z, BISAGNI C, KAWAI M, KRUEGER R. 29th Technical Conference of the American Society for Composites. California, USA: Destech Publisher, 2014: 929–947.Google Scholar
  4. [4]
    ZHAO C, SHITIAN M, MA W, QIAN X, ZHANG J, CHEN X. Methods for recovering carbon fiber from carbon-fiber-reinforced polymer (CFRP) composites: PCT Patent, WO/2014/179939 [P]. 2014.Google Scholar
  5. [5]
    HENRY L, SCHNELLER A, DOERFLER J, MUELLER W M, AYMONIER C, HORN S. Semi-continuous flow recycling method for carbon fibre reinforced thermoset polymers by near- and supercritical solvolysis [J]. Polymer Degradation and Stability, 2016, 133: 264–274. DOI: 10.1016/j.polymdegradstab.2016.09.002.Google Scholar
  6. [6]
    KIM K W, LEE H M, AN J H, CHUNG D C, AN K H, KIM B J. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method [J]. Journal of Environmental Management, 2017, 203(3): 872–879. DOI: 10.1016/ j.jenvman.2017.05.015.Google Scholar
  7. [7]
    SUN H F, GUO G, MEMON S A, XU W, ZHANG Q, ZHU J H, XING F. Recycling of carbon fibers from carbon fiber reinforced polymer using electrochemical method [J]. Composites: Part A, 2015, 78: 78–110. DOI: 10.1016/ j.compositesa.2015.07.015.Google Scholar
  8. [8]
    CHENG H, HUANG H, LIU Z, ZHANG J. Reaction kinetics of CFRP degradation in supercritical fluids [J]. Journals of Polymers and the Environment, 2018, 26: 26–2153. DOI: 10.1007/s10924-017-1114-2.Google Scholar
  9. [9]
    DAUGUET M, MANTAUX O, PERRY N, ZHAO Y F. Recycling of CFRP for high value applications: Effect of sizing removal and environmental analysis of the supercritical fluid solvolysis [J]. Procedia CIRP, 2015, 29: 29–734. DOI: 10.1016/j.procir.2015.02.064.Google Scholar
  10. [10]
    ONWUDILI J A, YILDIRIR E, WILLIAMS P T. Catalytic hydrothermal degradation of carbon reinforced plastic wastes for carbon fibre and chemical feedstock recovery [J]. Waste and Biomass Valorization, 2013, 4(1): 87–93. DOI: 10.1007/s12649-013-9204-4.Google Scholar
  11. [11]
    OKAJIMA I, SAKO T. Recycling of carbon fiber-reinforced plastic using supercritical and subcritical fluids [J]. Journal of Material Cycles and Waste Management, 2017, 19(1): 15–20. DOI: 10.1007/s10163-015-0412-9.Google Scholar
  12. [12]
    OLIVEUX G, DANDY L O, LEEKE G A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties [J]. Progress in Materials Science, 2015, 72: 72–161. DOI: 10.1016/j.pmatsci. 2015.01.004.Google Scholar
  13. [13]
    THOMASON J, JENKINS P, YANG L. Glass fibre strength—A review with relation to composite recycling [J]. Fibers, 2016, 4(2): 18. DOI: 10.3390/fib4020018.Google Scholar
  14. [14]
    NZIOKA A M, KIM Y J. Mechanochemical-enhanced chemical depolymerisation of glass-based fibre reinforced plastics from end-of-life-boats and ships [C]// ÇINAR O. 3rd International Conference on Engineering and Natural Sciences. Budapest, ICENS, 2017: 315.Google Scholar
  15. [15]
    MAVROPOULOS A. ISWA blog: Waste industry must prepare for 4th industrial revolution [EB/OL] [2017-06-20]. https://waste-management-world.com/a/iswa-blog-waste-industry-must-prepare-for-4th-industrial-revolution.Google Scholar
  16. [16]
    CATLIN J R, WANG Y. Recycling gone bad: When the option to recycle increases resource consumption [J]. Journal of Consumer Psychology, 2013, 23(1): 122–127: DOI: 10.1016/j.jcps.2012.04.001.Google Scholar
  17. [17]
    SUN M, TRUDEL R. The effect of recycling versus trashing on consumption: theory and experimental evidence [J]. Journal of Marketing Research, 2017, 54(2): 293–305. DOI: 10.1509/jmr.15.0574.Google Scholar
  18. [18]
    TRUDEL R. The behavioral economics of recycling [EB/OL] [2017-06-20]. https://hbr.org/2016/10/the-behavioral-economics-of-recycling.Google Scholar
  19. [19]
    Yamada K, Tomonaga F, Kamimura A. Improved preparation of recycled polymers in chemical recycling of fiber-reinforced plastics and molding of test product using recycled polymers [J]. Journal of Material Cycles and Waste Management, 2010, 12(3): 271–274. DOI: 10.1007/s10163-010-0296-7.Google Scholar
  20. [20]
    CHENG H, HUANG H, ZHANG J, JING D. Degradation of carbon fiber-reinforced polymer using supercritical fluids [J]. Fibers and Polymers, 2017, 18: 18–795. DOI: 10.1007/ s12221-017-1151-4.Google Scholar
  21. [21]
    KNIGHT C C, ZENG C, ZHANG C, LIANG R. Fabrication and properties of composites utilizing reclaimed woven carbon fiber by sub-critical and supercritical water recycling [J]. Materials Chemistry and Physics, 2015, 149: 149–317. DOI: 10.1016/j.matchemphys.2014.10.023.Google Scholar
  22. [22]
    LEE S H, KIM Y S, YOON K Y. A study on the chemical treatments suitable for the simple mechanical manipulation during the recycling process of FRP waste from ships [J]. Journal of the Korean Society for Marine Environmental Engineering, 2009, 12(1): 55–59.Google Scholar
  23. [23]
    AKONDA M H, STEFANOVA M, POTLURI P, SHAH D. Mechanical properties of recycled carbon fibre/polyeter thermoplastic tape composites [J]. Journal of Composite Materials, 2016, 51(8): 2655–2663. DOI: 10.1177/ 0021998316672091.Google Scholar
  24. [24]
    YANG Y, ZHAO Y, LI Y, DONG Q, CHEN D. Effect of sizing on the interfacial shear strength of carbon fiber/epoxy resin monofilament composite [J]. Journal of Wuhan University of Technology: Material Science Edition, 2014, 29(3): 483–487. DOI: 10.1007/s11595-014-0944-1.Google Scholar
  25. [25]
    WANG X X, LI M, WU Q, GU Y, LI Y, WANG S, ZHANG Z. Influence of surface state on moisture sensitivity of carbon fiber and its composite interfacial properties [J]. Journal of Wuhan University of Technology: Material Science Edition, 2016, 31(4): 757–764. DOI: 10.1007/s11595-016-1442-4.Google Scholar
  26. [26]
    WEHLACK C, POSSART W. Chemical structure formation and morphology in ultrathin polyurethane films on metals [C]// Adhesion Current Research and Applications. Weinheim: Wiley, 2005: 71–88.Google Scholar
  27. [27]
    SHENOI R A, WELLICOME J F. Composite materials in maritime structures [M]. vol. 2 Cambridge: Cambridge University Press, 1993.Google Scholar
  28. [28]
    LIU Yu-yan, SHAN Guo-hua, MENG Li-hua. Recycling of carbon fibre reinforced composites using water in subcritical conditions [J]. Material Science and Engineering A, 2009, 520(1, 2): 179–183. DOI:10.1016/j.msea.2009.05.030.Google Scholar
  29. [29]
    GARDNER S D, SINGAMSETTY C S K, BOOTH G L, HE G R. Surface characterization of carbon fibers using angle-resolved XPS and ISS [J]. Carbon, 1995, 33(5): 587–595.Google Scholar
  30. [30]
    YU B, JIANG Z, TANG X, YUE C Y, YANG J. Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating [J]. Composites Science and Technology, 2014, 99: 99–131. DOI: 10.1016/ j.compscitech.2014.05.021.Google Scholar
  31. [31]
    BATTLESON K A. Surface characterization of pan-based carbon fibers using XPS, SIMS and AFM [D]. Bozeman: Montana State University, 1998.Google Scholar
  32. [32]
    VELASCO-SANTOS C, MARTÍNEZ-HERNÁNDEZ A L, CASTAÑO V M. Silanization of carbon nanotubes: Surface modification and polymer nanocomposites [C]// Carbon Nanotubes-polymer Nanocomposites. Rijeka: Intech Publisher, 2011: 252–280.Google Scholar
  33. [33]
    NIE Y. Surface silanization of carbon nanofibers and nanotubes for altering the properties of epoxy composites [D]. Berlin: Bundesanstalt für Materialforschung und-prüfung, 2012.Google Scholar
  34. [34]
    WIJEWARDANE S. The role of CNT and CNT/composites for the development of clean energy [C]// Handbook of Polymer Nanocomposites: Processing, Performance and Application. Volume B: Carbon Nanotube-Based Polymer Composites. Berlin: Springer, 2015: 543–576.Google Scholar
  35. [35]
    ZHANG R L, HUANG Y D, LI N, LIU L, SU D. Effect of the concentration of the sizing agent on the carbon fibers surface and interface properties of its composites [J]. Journal of Applied Polymer Science, 2012, 125(1): 425–432. DOI: 10.1002/app.35616.Google Scholar
  36. [36]
    FEUILLADE V, BERGERET A, QUANTIN J C, CRESPY A. Relationships between the glass fibre sizing composition and the surface quality of sheet moulding compounds (SMC) body panels [J]. Composites Science and Technology, 2006, 66(1): 115–127. DOI: 10.1016/j.compscitech.2005.05.009.Google Scholar
  37. [37]
    ENSMINGER D, STULEN F B. Ultrasonics: Data, equations, and their practical uses [M]. Boca Raton: CRC Press, 2009.Google Scholar
  38. [38]
    NZIOKA A M, YAN C Z, KIM M G, SIM Y J, LEE C S, KIM Y J. Improvement of the chemical recycling process of waste carbon fibre reinforced plastics using mechanochemical process: Influence of process parameters [J]. Waste Management and Research, 2018, 36(10): 952–964. DOI: 10.1177/0734242X18790351Google Scholar
  39. [39]
    NZIOKA A M, KIM Y J. Surface analysis of glass fibres using XPS and AFM: Case study of glass fibres recovered from the glass fibre reinforced polymer using chemical recycling [J]. Journal of Physics: Conference Series, 2018, 953(1). DOI: 10.1088/1742-6596/953/1/012012.Google Scholar
  40. [40]
    LIU X, THOMASON J L, JONES F R. XPS and AFM study of interaction of organosilane and sizing with E-glass fibre surface [J]. Journal of Adhesion, 2008, 84(4): 322–338. DOI: 10.1080/00218460802004386.Google Scholar
  41. [41]
    NIE Wen-zhong. The effect of coupling agents on the mechanical propertiesof carbon fiber-reinforced polyimide composites [J]. Journal of Thermoplastic Composite Materials, 2014, 28(11): 1572–1582. DOI: 10.1177/ 0892705714535794.Google Scholar
  42. [42]
    ZAKIR M, ASHRAF U, TIAN T, HAN A, QIAO W, JIN X, ZHANG M, TSOI J K, MATINLINNA J P. The role of silane coupling agents and universal primers in durable adhesion to dental restorative materials—A review [J]. Current Oral Health Reports, 2016, 3(3): 244–253. DOI: 10.1007/ s40496-016-0108-9.Google Scholar
  43. [43]
    KREBS F C. Lifetime and stability studies [C]// Polymer Photovoltaics: A Practical Approach. Bellingham: Spie Press, 2008.Google Scholar
  44. [44]
    AKOVALI G. The interfacial interactions in polymeric composites [M]. Dordrecht: Kluwer Academic, 1992.Google Scholar
  45. [45]
    PROCTOR A, SHERWOOD P M A. X-ray photoelectron spectroscopic studies of carbon fibre surfaces. I. carbon fibre spectra and the effects of heat treatment [J]. Journal of Electron Spectroscopy and Related Phenomena, 1982, 27(1): 39–56. DOI: 10.1016/0368-2048(82)85051-2.Google Scholar
  46. [46]
    QIAN X, CHEN L, HUANG J, WANG W, GUAN J. Effect of carbon fiber surface chemistry on the interfacial properties of carbon fibers/epoxy resin composites [J]. Journal of Reinforced Plastics and Composites, 2012, 32(6): 393–401. DOI: 10.1177/0731684412468369.Google Scholar
  47. [47]
    MUNOZ-VELEZ M F, VALADEZ-GONZALEZ A, HERRERA-FRANCO P J. Effect of fiber surface treatment on the incorporation of carbon nanotubes and on the micromechanical properties of a single-carbon fiber-epoxy matrix composite [J]. Express Polymer Letters, 2017, 11(9): 704–718. DOI: 10.3144/expresspolymlett.2017.68.Google Scholar
  48. [48]
    PETERSEN H N, KUSANO Y, BRØNSTED P, ALMDAL K. Preliminary characterization of glass fiber sizing [C]// MADSEN B, LILHOLT H, KUSANO Y, FÆSTER S, RALPH B. 34th Risø International Symposium on Materials Science. Risø: DTU, 2013: 333–340.Google Scholar
  49. [49]
    METWALLI E, HAINES D, BECKER O, CONZONE S, PANTANO C G. Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates [J]. Journal of Colloid and Interface Science, 2006, 298(2): 825–831. DOI: 10.1016/j.jcis.2006.03.045.Google Scholar
  50. [50]
    THOMASON J L, DWIGHT D W. XPS analysis of the coverage and composition of coatings on glass fibres [J]. Journal of Adhesion Science and Technology, 2000, 14(5): 745–764. DOI: 10.1163/156856100742852.Google Scholar
  51. [51]
    JING Z. Different surface treatments of carbon fibers and their influence on the interfacial properties of carbon fiber/epoxy composites [D]. Paris: Ecole Centrale Paris, 2012.Google Scholar
  52. [52]
    SCHULTZ J, LAVIELLE L, MARTIN C. The role of the interface in carbon fibre-epoxy composites [J]. Journal of Adhesion, 1987, 23(1): 45–60. DOI: 10.1080/0021846 8708080469.Google Scholar
  53. [53]
    SONG W, GU A, LIANG G, YUAN L. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites [J]. Applied Surface Science, 2011, 257(9): 4069–4074. DOI: 10.1016/j.apsusc. 2010.11.177.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.R & D InstituteSilla Entech CompanyDaeguKorea
  2. 2.Department of Mechanical EngineeringKyungpook National UniversityDaeguKorea
  3. 3.Department of Biochemical and Environmental EngineeringHanjiang Normal UniversityShiyanChina
  4. 4.Department of Environmental and Energy EngineeringKyungpook National UniversityDaeguKorea
  5. 5.Department of Health EnvironmentDaegu Health CollegeDaeguKorea

Personalised recommendations