Journal of Central South University

, Volume 26, Issue 10, pp 2681–2687 | Cite as

Preparation of wettable TiB2-TiB/Ti cathode by electrolytic boronizing for aluminum electrolytic

  • You-guo Huang (黄有国)
  • Yi Wang (王益)
  • Xiao-hui Zhang (张晓辉)Email author
  • Hong-qiang Wang (王红强)
  • Qing-yu Li (李庆余)Email author


According to the problems of short life and low strength of TiB2 coating cathode for current technology in aluminium electrolysis industry, this work synthesized TiB2-TiB/Ti gradient composite with TiB2 coating and TiB whiskers in metallic Ti matrix by a electrolytic boronizing method based on similar density and thermal expansivity of the three materials. The phase composition and morphology of the cross-section were determined by X-ray diffraction (XRD), scanning electronic microscope (SEM) and X-ray energy dispersive spectrum (EDS). The results show that uniform TiB2 layer with a thickness of 8-10 μm is continuously coated on the surface while the TiB whisker connected with TiB2 layer was embedded dispersedly into the matrix. The TiB crystal whisker has a maximum length of about 220 μm. The growth rate of TiB2 and TiB is enhanced by the strong reduction of B4C. The novel gradient design of the composite helps to extend life and improve strength of the TiB2 cathode in aluminium electrolysis.


aluminium electrolysis electrolytic boronizing titanium diboride gradient materials 

通过铝电解的电解渗硼制备可湿性的TiB2-TiB/Ti 阴极


针对铝电解工业现有技术中TiB2 涂层阴极寿命短、强度低的问题,采用密度和热膨胀率相近的 三种材料的电解渗硼方法,合成了TiB2 涂层和TiB 晶须在金属Ti 基体中的TiB2-TiB/Ti 梯度复合材料。 采用X 射线衍射(XRD)、扫描电子显微镜(SEM)和X 射线能谱(EDS)等分析手段测定了材料的相组成 和截面形貌。结果表明,表面连续涂覆厚度为8–10 μm 的均匀TiB2 层,而与TiB2 层连接的TiB 晶须 分散嵌入基体中。TiB 晶须的最大长度约为220 μm,通过B4C 的强烈还原,TiB2 和TiB 的生长速率得 到提高,这种复合材料的新型梯度设计有助于延长TiB2 阴极在铝电解中的寿命和提高其强度。


铝电解 电解渗硼 二硼化钛 梯度材料 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DING Ji-lin, LI Jie, ZHANG Hong-liang, XU Yu-jie, YANG Shuai, LIU Ye-xiang. Comparison of structure and physical fields in 400 kA aluminum reduction cells [J]. Journal of Central South University, 2014, 21(11): 4097–4103.CrossRefGoogle Scholar
  2. [2]
    SONG Y, PENG J P, DI Y Z, WANG Y W, LI B K, FENG N X. Modified cathode with protrusions in aluminum reduction cell [J]. Metallurgical Research & Technology, 2016, 113(13): 306–312.CrossRefGoogle Scholar
  3. [3]
    BLOKHINA I A, IVANOV V V, KIRIK S D, NIKOLAEVA N S. Carbothermal synthesis of TiB2 powders of micron size [J]. Inorganic Materials, 2016, 9(4): 767–780.Google Scholar
  4. [4]
    TALLON C, FRANKS G V. Exploring inexpensive processing routes to prepare dense TiB2 components [J]. Advances in Applied Ceramics, 2016, 52(6): 550–557.Google Scholar
  5. [5]
    AN J, SONG J P, LIANG G X, GAO J J, XIE J C, CAO L, WANG S Y, LV M. Effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials [J]. Materials, 2017, 10(5): 461.CrossRefGoogle Scholar
  6. [6]
    ZHAO K, NIU B, ZHANG F, ZHANG J. Microstructure and mechanical properties of spark plasma sintered TiB2 ceramics combined with a high-entropy alloy sintering aid [J]. Advances in Applied Ceramics, 2017, 116(1): 19–23.CrossRefGoogle Scholar
  7. [7]
    LIU X, PEI J H, LIU M J, WANG Z, LIU L X, JING L, WU Z J. Microstructure and mechanical properties of textured TiB2 ceramic fabricated by combination of catalyst and hot-forging [J]. Materials Chemistry and Physics, 2017, 200(1): 217–222.CrossRefGoogle Scholar
  8. [8]
    BASU B, RAJU G B, SURI A K. Processing and properties of monolithic TiB2 based materials [J]. International Materials Reviews, 2006, 51(6): 352–374.CrossRefGoogle Scholar
  9. [9]
    PANDA K B, RAVI C HANDRAN K S. Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory [J]. Computational Materials Science, 2006, 35(2): 045115.CrossRefGoogle Scholar
  10. [10]
    FARHADI K, NAMINI A S, ASL M S, MOHAMMADZADEH A, KAKROUDI M G. Characterization of hot pressed SiC whisker reinforced TiB2 based composites [J]. International of Journal of Refractory Metals and Hard Materials, 2016, 61: 84–90.CrossRefGoogle Scholar
  11. [11]
    NIE J F, WANG F, LI Y S, CAO Y, LIU X F, ZHAO Y H, ZHU Y T. Microstructure evolution and mechanical properties of Al-TiB2/TiC in situ aluminum-based composites during accumulative roll bonding (ARB) process [J]. Materials, 2017, 10(2): 109.CrossRefGoogle Scholar
  12. [12]
    ZHAO G L, HUANG C Z, HE N, LIU H L, ZOU B. Effects of sintering conditions on microstructure and mechanical properties of reactive hot pressed TiB2-SiC ceramic composites [J]. Ceramics-Silikáty, 2016, 60(3): 226–233.CrossRefGoogle Scholar
  13. [13]
    POPOV A Y, SIVAK A A, BORODIANSKA H Y, SHABALIN I L. High toughness TiB2-Al2O3 composite ceramics produced by reactive hot pressing with fusible components [J]. Advances in Applied Ceramics, 2015, 114(3): 178–182.CrossRefGoogle Scholar
  14. [14]
    BUNIN V A, KARPOV A V, SENKOVENKO M Y. Fabrication, structure, and properties of TiB2-AlN ceramics [J]. Inorganic Materials, 2002, 38(7): 746–749.CrossRefGoogle Scholar
  15. [15]
    LV X J, HU L Y, SHUANG Y J, LIU J H, LAI Y Q, JIANG L X, LI J. The growth behavior of titanium boride layers in α and β phase fields of titanium [J]. Metallurgical and Materials Transactions A, 2016, 47(7): 3573–3579.CrossRefGoogle Scholar
  16. [16]
    RYBAKOVA N, BABUSHKINA O, ARTNER W, NAUER G E. Electrochemical synthesis of TiB2 layers out of FLiNaK electrolyte in the presence of TaCl5 additive [J]. Journal of the Electrochemical Society, 2010, 157(12): D593–D599.CrossRefGoogle Scholar
  17. [17]
    FASTNER U, STECK T, PASCUAL A, FAFILEK G, NAUER G E. Electrochemical deposition of TiB2 in high temperature molten salts [J]. Journal of Alloys and Compounds, 2008, 452: 32–35.CrossRefGoogle Scholar
  18. [18]
    KRENDELSBERGER R, SOUTO MF, SYTCHEV J, BESENHARD J O, FAFILEK G, KRONBERGER H, NAUER G E. Texture effects in TiB2 coatings electrodeposited from a NaCl-KCl-K2TiF6-NaF-NaBF4 melt at 700 °C [J]. Journal of Mining and Metallurgy, 2003, 39(1, 2): 269–274.CrossRefGoogle Scholar
  19. [19]
    HUANG Y G, CHEN J R, ZHANG M L, ZHONG X X, WANG H Q, LI Q Y. Electrolytic boronizing of titanium in Na2B4O7-20%K2CO3 [J]. Materials and Manufacturing Processes, 2013, 28(12): 1310–1313.CrossRefGoogle Scholar
  20. [20]
    TAAZIM N T, JAUHARI I, MIYASHITA Y, SABRI M F M. Development and kinetics of TiB2 layers on the surface of titanium alloy by superplastic boronizing [J]. Metallurgical and Materials Transactions A, 2016, 47A(5): 2217–2222.CrossRefGoogle Scholar
  21. [21]
    HUANG Y G, CHEN J R, ZHANG M L, ZHONG X X, LI Q Y, WANG H Q. Effects of M2CO3 (M=Li, Na, K) on electrolytic boronising of titanium in Na2B4O7 melts [J]. Surface Engineering, 2014, 30(2): 134–137.CrossRefGoogle Scholar
  22. [22]
    HUANG Y G, CHEN J R, ZHANG X H, WANG H Q, FANG Z, LI Q Y. Effects of La2O3 on electrolytic boronising of titanium [J]. Surface Engineering, 2015, 31(8): 570–574.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • You-guo Huang (黄有国)
    • 1
  • Yi Wang (王益)
    • 1
  • Xiao-hui Zhang (张晓辉)
    • 2
    Email author
  • Hong-qiang Wang (王红强)
    • 1
  • Qing-yu Li (李庆余)
    • 1
    Email author
  1. 1.Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilinChina
  2. 2.Guangxi Key Laboratory of Comprehensive Utilization of Calcium Carbonate Resources, College of Materials and Environmental EngineeringHezhou UniversityHezhouChina

Personalised recommendations