Journal of Central South University

, Volume 26, Issue 10, pp 2661–2667 | Cite as

Effects of ratio of hydrogen flow on microstructure of hydrogenated microcrystalline silicon films deposited by magnetron sputtering at 100 °C

  • Lin-qing Wang (王林青)
  • Yong-tao Zhou (周永涛)
  • Jun-jun Wang (王军军)Email author
  • Xue-qin Liu (刘雪芹)


Hydrogenated microcrystalline silicon (µc-Si:H) films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100 °C using a mixture of argon (Ar) and hydrogen (H2) gasses as precursor gas. The effects of the ratio of hydrogen flow (H2/(Ar+H2)%)) on the microstructure were evaluated. Results show that the microstructure, bonding structure, and surface morphology of the µc-Si:H films can be tailored based on the ratio of hydrogen flow. An amorphous to crystalline phase transition occurred when the ratio of hydrogen flow increased up to 50%. The crystallinity increased and tended to stabilize with the increase in ratio of hydrogen flow from 40% to 70%. The surface roughness of thin films increased, and total hydrogen content decreased as the ratio of hydrogen flow increased. All µc-Si:H films have a preferred (111) orientation, independent of the ratio of hydrogen flow. And the µc-Si:H films had a dense structure, which shows their excellent resistance to post-oxidation.

Key words

hydrogenated microcrystalline silicon films radio frequency magnetron sputtering ratio of hydrogen flow low temperature microstructure 

氢稀释比对磁控溅射低温(100 °C)沉积氢化微晶硅薄膜微结构特性的影响


在低温(100 °C)条件下采用磁控溅射在玻璃和硅(100)衬底上沉积氢化微晶硅(μc-Si:H)薄膜,研 究不同氢稀释比对微晶硅薄膜微结构特性的影响。结果表明:薄膜从非晶相过渡到了微晶相当氢稀释 比增加到约50%,氢化微晶硅薄膜的结晶率随氢稀释比从40%增加到70%先增加后趋于稳定;薄膜的 表面粗糙度随着氢稀释比的增加而增加,氢含量的变化趋势与之相反;所制备的氢化微晶硅薄膜都具 有 (111)择优取向,与氢稀释比无关,且薄膜结构致密。


微晶硅薄膜 射频磁控溅射 氢稀释比例 低温 微结构 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    LI T T, XU S Z, HUANG Q, REN H Z, NI J, LI B Z, ZHANG D K, WEI C C, AMANATIDES E, MATARAS D, ZHAO Y, ZHANG X. SiH4 enhanced dissociation via argon plasma assistance for hydrogenated microcrystalline silicon thin-film deposition and application in tandem solar cells [J]. Sol Energ Mat Sol C, 2018, 180: 110–117. DOI: 10.1016/ j.solmat.2018.02.024.CrossRefGoogle Scholar
  2. [2]
    LIU B, BAI L, LI T, WEI C, LI B, HUANG Q, ZHANG D, WANG G, ZHAO Y, ZHANG X. High efficiency and high open-circuit voltage quadruple-junction silicon thin film solar cells for future electronic applications [J]. Energy Environ Sci, 2017, 10: 1134–1141. DOI: 10.1039/C7EE00332C.CrossRefGoogle Scholar
  3. [3]
    ZHONG C L, GENG K W, LUO L E, YANG D W. An analytical model to explore open-circuit voltage of a-Si:H/c-Si heterojunction solar cells [J]. Journal of Central South University, 2016, 23: 598–603. DOI: 10.1007/s11771-016-3106-0.CrossRefGoogle Scholar
  4. [4]
    SU Y J, DOND C, ZHU M, XU J, FAN P H. Effects of growth temperature on µc-Si:H films prepared by plasma assistant magnetron sputtering [J]. Rare Metals, 2012, 31(2): 193–197. DOI: 10.1007/s12598-012-0490-y.CrossRefGoogle Scholar
  5. [5]
    PYTHON M, MADANI O, DOMINÉ D, MEILLAUD F, VALLAT-SAUVAIN E, BALLIF C. Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells [J]. Sol Energ Mat Sol C, 2009, 93(10): 1714–1720. DOI: 10.1016/j.solmat.2009.05.025.CrossRefGoogle Scholar
  6. [6]
    BUGNON G, FELTRIN A, MEILLAUD F, BAILAT J, BALLIF C. Influence of pressure and silane depletion on microcrystalline silicon material quality and solar cell performance [J]. J Appl Phys, 2009, 105(6): 064507. DOI: 10.1063/1.3095488.Google Scholar
  7. [7]
    ADHIKARI D, JUNDA M M, MARSILLAC S X, COLLINS R W, PODRAZA N J. Nanostructure evolution of magnetron sputtered hydrogenated silicon thin films [J]. J Appl Phys, 2017, 122(7): 075302. DOI: 10.1063/1.4998455.Google Scholar
  8. [8]
    WANG L Q, WANG W Y, HUANG J H, TAN R Q, SONG W J, CHEN J M. Growth and properties of hydrogenated microcrystalline silicon thin films prepared by magnetron sputtering with different substrate temperatures [J]. Rare Metals, 2015. DOI: 10.1007/s12598-015-0510-9.Google Scholar
  9. [9]
    DUSHAQ G, NAYFEH A, RASRAS M. Tuning the optical properties of RF-PECVD grown µc-Si:H thin films using different hydrogen flow rate [J]. Superlattice Microst, 2017, 107: 172–177. DOI: 10.1016/j.spmi.2017.03.052.CrossRefGoogle Scholar
  10. [10]
    KLEIN S, REPMANN T, BRAMMER T. Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD [J]. Sol Energy, 2004, 77(6): 893–908. DOI: 10.1016/j.solener.2004.08.029.CrossRefGoogle Scholar
  11. [11]
    FUKAYA K, TABATA A, SASAKI K. Mechanism of hydrogenated microcrystalline Si film deposition by magnetron sputtering employing a Si target and H2/Ar gas mixture [J]. Jpn J Appl Phys, 2014, 48(3): 035507. DOI: 10.1143/JJAP.48.035507.Google Scholar
  12. [12]
    MELLOS A, KANDYLA M, PALLES D, KOMPITSAS M. Effects of hydrogen pressure on hydrogenated amorphous silicon thin films prepared by low-temperature reactive pulsed laser deposition [J]. Phys Status Solidi C, 2017, 14(1, 2): 1600088. DOI: 10.1002/pssc.201600088.Google Scholar
  13. [13]
    ALPUIM P, CHU V, CONDE J P. Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition [J]. Jpn J Appl Phys, 1999, 86(7): 3812. DOI: 10.1063/1.371292.Google Scholar
  14. [14]
    GERBI JE, ABELSON J R. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment [J]. Jpn J Appl Phys, 2007, 101(6): 063508. DOI: 10.1063/1.2710301.Google Scholar
  15. [15]
    WADIBHASME NA, DUSANE R O. Low temperature deposition of device-quality silicon thin films for flexible PV application [C] // 40th IEEE Photovoltaic Specialist Conference. Denvor: IEEE 2014: 3060–3064. DOI: 10.1109/PVSC.2014.6925581.Google Scholar
  16. [16]
    DAVIS WA, LEWIN G, DAVIS T M E, BRUCE D G. Nanocrystalline Si: H thin films grown at room temperature with plasma-enhanced chemical vapour deposition at a very high pressure [J]. J Phys D Appl Phys, 2012, 45(33): 335104. DOI: 10.1088/0022-3727/45/33/335104.Google Scholar
  17. [17]
    ZHANG L, GAO JH, XIAO JQ, WEN LS, GONG J, SUN C. Low-temperature (120 °C) growth of nanocrystalline silicon films prepared by plasma enhanced chemical vapor deposition from SiCl4/H2 gases: Microstructure characterization [J]. Appl Surf Sci, 2012, 258(7): 3221–3226. DOI: 10.1016/j.apsusc.2011.11.068.CrossRefGoogle Scholar
  18. [18]
    BHATTACHARYA K, DAS D. Effect of deposition temperature on the growth of nanocrystalline silicon network from helium diluted silane plasma [J]. J Phys D Appl Phys, 2008, 41(15): 155420. DOI: 10.1088/0022-3727/ 41/15/155420.Google Scholar
  19. [19]
    WANG L, WANG W, HUANG J, ZENG Y, TAN R, SONG W, CHEN J. Low temperature magnetron sputtering deposition of hydrogenated microcrystalline silicon thin films without amorphous incubation layers on glass [J]. J Non-Cryst Solids, 2014, 388(3): 86–90. DOI: 10.1016/j.jnoncrysol.2014.01.038.Google Scholar
  20. [20]
    MAKIHARA H, TABATA A, SUZUOKI Y, MIZUTANI T. Effect of the hydrogen partial pressure ratio on the properties of µc-Si:H films prepared by rf magnetron sputtering [J]. Vacuum, 2000, 59(2): 785–791. DOI: 10.1016/S0042- 207X(00)00348-1.CrossRefGoogle Scholar
  21. [21]
    GONÇALVES C, CHARVET S, ZEINERT A, CLIN M, ZELLAMA K. Nanocrystalline silicon thin films prepared by radiofrequency magnetron sputtering [J]. Thin Solid Films, 2002, 403–404: 91–96. DOI: 10.1016/s0040-6090(01)01553-x.Google Scholar
  22. [22]
    FUKAYA K, TABATA A, MIZUTANI T. Dependence on gas pressure of µc-Si:H prepared by RF magnetron sputtering [J]. Vacuum, 2004, 74(3, 4): 561–565. DOI: 10.1016/j.vacuum.2004.01.027.CrossRefGoogle Scholar
  23. [23]
    GOPE J, KUMAR S, SUDHAKAR S, RAUTHAN C M S, SRIVASTAVA P C. Effect of silane flow rate on structural, electrical and optical properties of silicon thin films grown by VHF PECVD technique [J]. Mater Chem Phys, 2013, 141(1): 89–94. DOI: 10.1016/j.matchemphys.2013.04.028.CrossRefGoogle Scholar
  24. [24]
    GUO L, DING J, YANG J, CHENG G, LING Z. Effects of high hydrogen dilution ratio on surface topography and mechanical properties of hydrogenated nanocrystalline silicon thin films [J]. Thin Solid Films, 2011, 519(18): 6039–6043. DOI: 10.1016/j.tsf.2011.04.117.CrossRefGoogle Scholar
  25. [25]
    CHENG Q, XU S, OSTRIKOV K K. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas [J]. Nanotechnology, 2009, 20–21: 215606. DOI: 10.1088/0957-4484/20/21/215606.Google Scholar
  26. [26]
    CHENG Q, XU S, HUANG S, OSTRIKOV K. Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas [J]. Cryst Growth Des, 2009, 9(6): 2863–2867. DOI: 10.1021/cg900176c.CrossRefGoogle Scholar
  27. [27]
    MATSUDA A. Microcrystalline silicon: Growth and device application [J]. J Non-Cryst Solids, 2004, 338(1): 1–12. DOI: 10.1016/j.jnoncrysol.2004.02.012.CrossRefGoogle Scholar
  28. [28]
    WEI DY, XIAO SQ, HUANG SY, CHAN CS, ZHOU HP, XU LX, GUO YN, CHAI JW, WANG SJ, XU S. Low-temperature deposition of µc-Si: H thin films by a low-frequency inductively coupled plasma for photovoltaic applications [J]. J Phys D Appl Phys, 2013, 46(21): 215501. DOI: 10.1088/0022-3727/46/21/215501.Google Scholar
  29. [29]
    XIAO SQ, XU S, WEI DY, HUANG SY, ZHOU HP, XU Y. From amorphous to microcrystalline: Phase transition in rapid synthesis of hydrogenated silicon thin film in low frequency inductively coupled plasmas [J]. J Appl Phys, 2010, 108(11): 113520. DOI: 10.1063/1.3514006.Google Scholar
  30. [30]
    CHENG Q, XU S, OSTRIKOV K. Rapid, low-temperature synthesis of nc-Si in high-density, non-equilibrium plasmas: Enabling nanocrystallinity at very low hydrogen dilution [J]. J Mater Chem, 2009, 19(29): 5134–5140. DOI: 10.1039/b904227j.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceChongqing University of TechnologyChongqingChina
  2. 2.Chongqing Key Laboratory of Green Energy Materials Technology and SystemsChongqingChina
  3. 3.College of Materials Science and EngineeringChongqing University of TechnologyChongqingChina
  4. 4.Chongqing Collaborative Innovation Center for Brake Tribological MaterialsChongqingChina

Personalised recommendations