Advertisement

Journal of Central South University

, Volume 26, Issue 10, pp 2623–2633 | Cite as

Tribological behavior of Cu-15Ni-8Sn/graphite under sea water, distilled water and dry-sliding conditions

  • Yan Wang (王艳)
  • Lei Zhang (张雷)Email author
  • Hong-fei Zhai (翟洪飞)
  • Hong-xia Gao (高红霞)
  • Ke-chao Zhou (周科朝)
Article
  • 29 Downloads

Abstract

The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.% against AISI321 stainless steel under dry-sliding, deionized water and sea water were investigated on a block-on-ring configuration. The results indicated that the friction coefficient was the lowest under dry-sliding, and the highest in deionized water. The wear rate decreased to reach the minimum value of 1.39×10-15 m3/(Nm) in sea water and in deionized water, it increased to the maximum value of 5.56×10-15 m3/(Nm). The deionized water hindered the formation of tribo-oxide layer and lubricating film, which resulted in the largest friction coefficient and wear rate. In sea water, however, the corrosion products comprised of oxides, hydroxides and chlorides were found on the worn surface, and the compacted layer composed of corrosion products and graphite played an important role in keeping the excellent wear resistance. It was elucidated that the tribological behaviors of Cu-15Ni-8Sn/graphite composite were powerful influenced by the friction environments.

Key words

self-lubricating composites tribological behavior compacted layers corrosion products sea water 

Cu-15Ni-8Sn/石墨复合材料在海水、去离子水和干摩擦中的摩擦学行为研究

摘要

本文选取AISI321 不锈钢作为对偶材料,研究Cu-15Ni-8Sn/石墨复合材料(石墨含量为38 vol%) 在干摩擦、去离子水与海水三种环境中的摩擦学行为,该实验在环块式摩擦试验机上进行。结果表明: Cu-15Ni-8Sn/石墨复合材料的摩擦系数在干摩擦时最小,在去离子水中最大;此外,海水中该复合材 料的磨损率达到最小值,即1.39×10−15 m3/(N·m),在去离子水中,其磨损率增加到5.56×10−15 m3/(N·m), 达到最大值。这表明去离子水阻碍了摩擦氧化层与润滑膜的形成,导致Cu-15Ni- 8Sn/石墨复合材料表 现出较大的摩擦系数与磨损率。在海水环境中该复合材料磨损表面形成的腐蚀产物主要包括氧化物、 氢氧化物与氯化物,且该腐蚀产物与石墨构成的压实层在保持优异的耐磨性能方面具有至关重要的作 用。研究结果表明,摩擦环境显著影响Cu-15Ni-8Sn/石墨复合材料的摩擦学行为。

关键词

自润滑复合材料 摩擦学行为 压实层 腐蚀产物 海水 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    RAJKUMAR K, ARAVINDAN S. Tribological behavior of microwave processed copper-nanographite composites [J]. Tribology International, 2013, 57: 282–296.CrossRefGoogle Scholar
  2. [2]
    JIN K J, QIAO Z H, ZHU S Y, CHENG J, YIN B, YANG J. Friction and wear properties and mechanism of bronze-CrAg composites under dry-sliding conditions [J]. Tribology International, 2016, 96: 132–140.CrossRefGoogle Scholar
  3. [3]
    SINGH M K, GAUTAM R K. Mechanical and tribological properties of plastically deformed copper metal matrix nano composite [J]. Materials Today: Proceedings, 2018, 5: 5727–5736.Google Scholar
  4. [4]
    HUANG Z X, ZHENG Z, ZHAO S, DONG S J, LUO P, CHEN L. Copper matrix composites reinforced by aligned carbon nanotubes: Mechanical and tribological properties [J]. Materials & Design, 2017, 133: 570–578.CrossRefGoogle Scholar
  5. [5]
    ZHOU J, MA C, KANG X, ZHANG L, LIU X L. Effect of WS2 particle size on mechanical properties and tribological behaviors of Cu-WS2 composites sintered by SPS [J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 1176–1185.CrossRefGoogle Scholar
  6. [6]
    CUI G J, BI Q L, NIU M Y, YANG J, LIU W M. The tribological properties of bronze-SiC-graphite composites under sea water condition [J]. Tribology International, 2013, 60: 25–35.CrossRefGoogle Scholar
  7. [7]
    CHEN B M, BI Q L, YANG J, XIA Y Q, HAO J C. Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites [J]. Tribology International, 2008, 41: 1145–1152.CrossRefGoogle Scholar
  8. [8]
    MAI Y J, CHEN F X, LIAN W Q, ZHANG L Y, LIU C S, JIE X H. Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets [J]. Journal of Alloys and Compounds, 2018, 756: 1–7.CrossRefGoogle Scholar
  9. [9]
    GAO X, YUE H Y, GUO E J, ZHANG S L, YAO L H, LIN X Y, WANG B, GUAN E H. Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets [J]. Journal of Materials Science & Technology, 2018, 34: 1925–1931.CrossRefGoogle Scholar
  10. [10]
    CRIBB W R, RATKA J O. Copper spinodal alloys [J]. Advanced Materials & Processes, 2002, 160: 27–30.Google Scholar
  11. [11]
    ZHANG S H, GAN X P, CHENG J J, JIANG Y X, LI Z, ZHOU K C. Effect of applied load on the transition behavior of wear mechanism in the Cu-15Ni-8Sn alloy under oil lubrication [J]. Journal of Central South University, 2017, 24(8): 1754–1761.CrossRefGoogle Scholar
  12. [12]
    KESTURSATYA M, KIM J K, ROHATGI P K. Wear performance of copper-graphite composite and a leaded copper alloy [J]. Materials Science & Engineering A, 2003, 339: 150–158.CrossRefGoogle Scholar
  13. [13]
    KATO H, TAKAMA M, IWAI Y, WASHIDA K, SASAKI Y. Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide [J]. Wear, 2003, 255: 573–578.CrossRefGoogle Scholar
  14. [14]
    JIA J H, CHEN J M, ZHOU H D, WANG J B, ZHOU H. Friction and wear properties of bronze-graphite composite under water lubrication [J]. Tribology International, 2004, 37: 423–429.CrossRefGoogle Scholar
  15. [15]
    CUI G J, BI Q L, ZHU S Y, YANG J, LIU W M. Tribological properties of bronze-graphite composites under sea water condition [J]. Tribology International, 2012, 53: 76–86.CrossRefGoogle Scholar
  16. [16]
    CHEN J, WANG J Z, CHEN B B, YAN F Y. Tribocorrosion behaviors of inconel 625 alloy sliding against 316 steel in sea water [J]. Tribology Transactions, 2011, 54: 514–522.CrossRefGoogle Scholar
  17. [17]
    TAO S, LI D Y. Investigation of corrosion-wear synergistic attack on nano-crystalline Cu deposits [J]. Wear, 2007, 263: 363–370.CrossRefGoogle Scholar
  18. [18]
    WANG Y, ZHANG L, XIAO J K, CHEN W, FENG C F, GAN X P, ZHOU K C. The tribo-corrosion behavior of Cu-9wt%Ni-6wt%Sn alloy [J]. Tribology International, 2016, 94: 260–268.CrossRefGoogle Scholar
  19. [19]
    CUI G J, BI Q L, ZHU S Y, FU L C, YANG J, QIAO Z H, LIU W M. Synergistic effect of alumina and graphite on bronze matrix composites: Tribological behaviors in sea water [J]. Wear, 2013, 303: 216–224.CrossRefGoogle Scholar
  20. [20]
    FENG C F, WANG Y, CHEN W, ZHANG L, ZHOU K C. The mechanical mixed layer and its role in Cu-15Ni-8Sn/graphite composites [J]. Tribology Transactions, 2017, 60: 135–145.CrossRefGoogle Scholar
  21. [21]
    ZHANG L, XIAO J K, ZHOU K C. Sliding wear behavior of silver-molybdenum disulfide composite [J]. Tribology Transactions, 2012, 55(4): 473–480.CrossRefGoogle Scholar
  22. [22]
    LI X Q, GAO Y M, SONG L C, YANG Q X, WEI S Z, YOU L, ZHOU Y C, ZHANG G S, XU L J, YANG B. Influences of hBN content and test mode on dry sliding tribological characteristics of B4C-hBN ceramics against bearing steel [J]. Ceramics International, 2018, 44: 6443–6450.CrossRefGoogle Scholar
  23. [23]
    CUI G J, BI Q L, ZHU S Y, YANG J, LIU W M. Tribological behavior of Cu-6Sn-6Zn-3Pb under sea water, distilled water and dry-sliding conditions [J]. Tribology International, 2012, 55: 126–134.CrossRefGoogle Scholar
  24. [24]
    LI X Q, GAO Y M, WEI S Z, YANG Q X. Tribological behaviors of B4C-hBN ceramic composites used as pins or discs coupled with B4C ceramic under dry sliding condition [J]. Ceramics International, 2017, 43: 1578–1583.CrossRefGoogle Scholar
  25. [25]
    LI X Q, GAO Y M, WEI S Z, YANG Q X, ZHONG Z C. Dry sliding tribological properties of self-mated couples of B4C-hBN ceramic composites [J]. Ceramics International, 2017, 43: 162–166.CrossRefGoogle Scholar
  26. [26]
    STOTT F H. The role of oxidation in the wear of alloys [J]. Tribology International, 1998, 31: 61–71.CrossRefGoogle Scholar
  27. [27]
    MCINTYRE N S, COOK M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper [J]. Analytical Chemistry, 1975, 47: 2208–2213.CrossRefGoogle Scholar
  28. [28]
    POULSTON S, PARLETT P M, STONE P, BOWKER M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES [J]. Surface & Interface Analysis, 1996, 24: 811–820.CrossRefGoogle Scholar
  29. [29]
    LIU T, CHEN S G, CHENG S, TIAN J T, CHANG X T, YIN Y S. Corrosion behavior of super-hydrophobic surface on copper in seawater [J]. Electrochimica Acta, 2007, 52: 8003–8007.CrossRefGoogle Scholar
  30. [30]
    KEAR G, BARKER B D, WALSH F C. Electrochemical corrosion of unalloyed copper in chloride media-A critical review [J]. Corrosion Science, 2004, 46: 109–135.CrossRefGoogle Scholar
  31. [31]
    SANDBERG J, WALLINDER I O, LEYGRAF C, BOZEC N L. Corrosion-induced copper run off from naturally and pre-patinated copper in a marine environment [J]. Corrosion Science, 2006, 48: 4316–4338.CrossRefGoogle Scholar
  32. [32]
    TAYLOR J A, LANCASTER G M, RABALAIS J W. Chemical reactions of N2+ ion beams with group IV elements and their oxides [J]. Journal of Electron Spectroscopy & Related Phenomena, 1978, 13: 435–444.CrossRefGoogle Scholar
  33. [33]
    ROBBIOLA L, TRAN T T M, DUBOT P, MAJERUS O, RAHMOUNI K. Characterization of anodic layers on Cu-10Sn bronze (RDE) in aerated NaCl solution [J]. Corrosion Science, 2008, 50: 2205–2215.CrossRefGoogle Scholar
  34. [34]
    ANTONIJEVIC M M, MILIC S M, PETROVIC M B. Films formed on copper surface in chloride media in the presence of azoles [J]. Corrosion Science, 2009, 51: 1228–1237.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Institute of Mechanical and Electrical EngineeringZhengzhou University of Light IndustryZhengzhouChina
  2. 2.State Key Laboratory for Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations