Advertisement

Journal of Central South University

, Volume 26, Issue 8, pp 2068–2076 | Cite as

Effect of nozzle geometry on pressure drop in submerged gas injection

  • Jun-bing Xiao (肖俊兵)
  • Hong-jie Yan (闫红杰)Email author
  • Markus SchubertEmail author
  • Sebastian Unger
  • Liu Liu (刘柳)
  • Eckhard Schleicher
  • Uwe Hampel
Article Multiphase flow thermophysics
  • 9 Downloads

Abstract

Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter AoL o −2 and on the modified Froude number gd o 5 Q−2 with the hydraulic diameter of the nozzle do as characteristic length.

Key words

submerged gas injection nozzle geometry hydraulic diameter pressure drop modified Euler number 

喷嘴结构对浸没式气体喷吹过程压降的影响

摘要

浸没式气体喷吹进入液体中引起复杂多相流动, 其中喷嘴的结构对压降方面的操作费用至关重 要。本文使用了具有圆形、齿轮状和四叶截面形状的喷嘴结构, 研究了不同气体流量和溶池深度下喷 嘴结构对喷嘴进出口间压降的影响。结果表明, 除喷孔出口处水力直径外, 喷孔出口处面积和周长也 对压降有重要作用。对于相同的气相表观气速, 四叶形几何结构条件下的平均压降最小。溶池深度对 压降的影响可以忽略不计。提出了一个与压力降相关的修正欧拉数的经验式, 该式取决于喷嘴结构参 数AoL o −2 和特征长度为水力直径do的修正弗劳德数 gd o 5 Q−2

关键词

浸没式气体喷吹 喷嘴结构 水力直径 压降 修正欧拉数 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LIU Liu, YAN Hong-jie, ZIEGENHEIN T, HESSENKEMPER H, LI Qing, LUCAS D. A systematic experimental study and dimensionless analysis of bubble plume oscillations in rectangular bubble columns [J]. Chemical Engineering Journal, 2019, 372: 352–362. DOI: 10.1016/j.cej.2019.04.158.CrossRefGoogle Scholar
  2. [2]
    QUIYOOM A, GOLANI R, SINGH V, BUWA V V. Effect of differential flow schemes on gas-liquid flow and liquid phase mixing in a basic oxygen furnace [J]. Chemical Engineering Science, 2017, 170: 777–789. DOI: 10.1016/j.ces.2017.03.010.CrossRefGoogle Scholar
  3. [3]
    LIU Liu, YAN Hong-jie, ZHAO Guo-jian, ZHUANG Jia-cai. Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution [J]. Experimental Thermal and Fluid Science, 2016, 78: 254–265. DOI: 10.1016/j.expthermflusci.2016.06.011.CrossRefGoogle Scholar
  4. [4]
    CHAWLA T C. Rate of liquid entrainment at the gas-liquid interface of a liquid submerged sonic gas jet [J]. Nuclear Science and Engineering, 1975, 56(1): 1–6. DOI: 10.13182/nse75-a26616.CrossRefGoogle Scholar
  5. [5]
    LIU Liu, KEPLINGER O, ZIEGENHEIN T, SHEVCHENKO N, ECKERT S, YAN Hong-jie, LUCAS D. Euler–Euler modeling and X-ray measurement of oscillating bubble chain in liquid metals [J]. International Journal of Multiphase Flow, 2019, 110: 218–237. DOI: 10.1016/j.ijmultiphaseflow.2018.09.011.MathSciNetCrossRefGoogle Scholar
  6. [6]
    QUIYOOM A, AJMANI S K, BUWA V V. Optimization of bottom tuyere configuration for basic oxygen furnace steelmaking through experiments and CFD simulations [J]. Chemical Engineering Journal, 2018, 346: 127–142. DOI: 10.1016/j.cej.2018.03.122.CrossRefGoogle Scholar
  7. [7]
    CHEN Ri-jian, YAN Hong-jie, LIU Liu, XIAO Jun-bing, SONG Yan-po. Bubble size distribution in bottom blowing process based on image processing technology [J]. Journal of Central South University (Science and Technology), 2018, 49(6): 1541–1547. (in Chinese)Google Scholar
  8. [8]
    SHUI Lang, CUI Zhi-xiang, MA Xiao-dong, AKBAR RHAMDHANI M, NGUYEN A, ZHAO Bao-jun. Mixing phenomena in a bottom blown copper smelter: A water model study [J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1218–1225. DOI: 10.1007/s11663-015-0324-z.CrossRefGoogle Scholar
  9. [9]
    LIU Liu, KEPLINGER O, MA Tian, ZIEGENHEIN T, SHEVCHENKO N, ECKERT S, YAN Hong-jie, LUCAS D. Euler-Euler simulation and X-ray measurement of bubble chain in a shallow container filled with liquid metals [J]. Chemical Engineering Science, 2018, 192: 288–305. DOI: 10.1016/j.ces.2018.07.034.CrossRefGoogle Scholar
  10. [10]
    KAPUSTA J P, LAROUCHE F, PALUMBO E. Adoption of high oxygen bottom blowing in copper matte smelting: Why is it taking so long? [C]// MUINONEN M, MARIN T, STUBINA N. Proceedings of the Proceedings of the Torstein Utigard Memorial Symposium. Toronto, Canada: The Canadian Institute of Mining, Metallurgy and Petroleum, 2015.Google Scholar
  11. [11]
    SHUI Lang. Fluid dynamics studies related to bottom blown copper smelting furnace [D]. Brisbane Area, Australia: The University of Queensland, 2015. DOI: 10.14264/uql.2016.366.CrossRefGoogle Scholar
  12. [12]
    KAPUSTA J P T. Submerged gas jet penetration: a study of bubbling versus jetting and side versus bottom blowing in copper bath smelting [J]. JOM, 2017, 69(6): 970–979. DOI: 10.1007/s11837-017-2336-4.CrossRefGoogle Scholar
  13. [13]
    YAN Hong-jie, XIAO Jun-bing, SONG Yan-po, HU Zhi-wen, TAN Zhi-kai, LIU Liu. Cold model on bubble growth and detachment in bottom blowing process [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 213–221. DOI: 10.1016/S1003-6326(18)64930-1.CrossRefGoogle Scholar
  14. [14]
    COURSOL P, MACKEY P J, KAPUSTA J P T, VALENCIA N C. Energy consumption in copper smelting: A new Asian horse in the race [J]. JOM, 2015, 67(5): 1066–1074. DOI: 10.1007/s11837-015-1380-1.CrossRefGoogle Scholar
  15. [15]
    YANG Qi-xing, BJÖRKMAN B, CARLSSON G. Effects of bubble expansion on wear of refractory for BOF stirring plugs embedding tuyères [J]. Steel Research, 1997, 68(3): 107–114. DOI: 10.1002/srin.199700549.CrossRefGoogle Scholar
  16. [16]
    AOKI T. The mechanism of the back-attack phenomenon on a bottom blowing tuyere investigated in model experiments [J]. Tetsu-to-Hagane, 1990, 76(11): 1996–2003. DOI: 10.2355/tetsutohagane1955.76.11_1996.CrossRefGoogle Scholar
  17. [17]
    AOKI T. Elimination of the back-attack phenomenon on a bottom blowing tuyere investigated in model experiments [J]. Tetsu-to-Hagane, 1990, 76(11): 2004–2010. DOI: 10.2355/tetsutohagane1955.76.11_2004.CrossRefGoogle Scholar
  18. [18]
    WEI Ji-he, MA Jing-chang, FAN Yang-yi, YU Neng-wen, YANG Sen-long, XIANG Shun-hua. Back-attack phenomena of gas jets with submerged horizontally blowing and effects on erosion and wear of refractory lining [J]. ISIJ International, 1999, 39(8): 779–786. DOI: 10.2355/isijinternational.39.779.CrossRefGoogle Scholar
  19. [19]
    WEI Ji-he, ZHU Hong-li, JIANG Qing-yuan, SHI Guo-min, CHI He-bing, WANG Hai-jiang. Physical modeling study on combined side and top blowing AOD refining process of stainless steel: Back-attack phenomenon of gas streams with horizontal side blowing and its influence on erosion and wear of refractory lining [J]. ISIJ International, 2010, 50(10): 1347–1356. DOI: 10.2355/isijinternational.50.1347.CrossRefGoogle Scholar
  20. [20]
    WANG Qin-meng, GUO Xue-yi, TIAN Qing-hua. Copper smelting mechanism in oxygen bottom-blown furnace [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4): 946–953. DOI: 10.1016/S1003-6326(17)60110-9.CrossRefGoogle Scholar
  21. [21]
    WANG Qing-meng, GUO Xue-yi, WANG Song-song, LIAO Li-le, TIAN Qing-hua. Multiphase equilibrium modeling of oxygen bottom-blown copper smelting process [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2503–2511. DOI: 10.1016/S1003-6326(17)60277-2.CrossRefGoogle Scholar
  22. [22]
    YU Yue, WEN Zhi, LIU Xun-liang, SU Fu-yong, LAN Hai-peng, HAO Xiao-hong. Hydraulic model experiment and numerical simulation of bottom-blowing copper smelting furnace [J]. Applied Mechanics and Materials, 2014, 602-605: 546–553. DOI: 10.4028/www.scientific.net/amm.602-605.546.CrossRefGoogle Scholar
  23. [23]
    YU Yue, WEN Zhi, LIU Xun-liang, SU Fu-yong, LAN Hai-peng, HAO Xiao-hong. Simulation and experiment of influence of nozzle structure on bottom-blowing furnace flowing process [J]. Journal of Central South University (Science and Technology), 2014, 45(12): 4129–4137. (in Chinese)Google Scholar
  24. [24]
    HIGUCHI Y, TAGO Y. Effect of lance design on jet behavior and spitting rate in top blown process [J]. ISIJ International, 2001, 41(12): 1454–1459. DOI: 10.2355/isijinternational.41.1454.CrossRefGoogle Scholar
  25. [25]
    MARTIN M, RENDUELES M, DIAZ M. Steel-slag mass transfer in steel converter, bottom and top/bottom combined blowing through cold model experiments [J]. Chemical Engineering Research and Design, 2005, 83(9): 1076–1084. DOI: 10.1205/cherd.02156.CrossRefGoogle Scholar
  26. [26]
    YAN Hong-jie, XIAO Jun-bing, HU Zhi-wen. Experimental investigation on bubbule formation from multi-hole nozzles [C]// KINGOLI F, XUEYI G, SHUMSKIY V, KOZLOV P, CAPIGILIA C, SILVA AC, TURNA T. Sustainable Industrial Processing Summit. Montraal, Canada: Flogen Star OUTREACH, 2016, 8: 199–212.Google Scholar
  27. [27]
    ROYNE A, DEY C J. Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays [J]. International Journal of Heat and Mass Transfer, 2006, 49(3, 4): 800–804. DOI: 10.1016/j.ijheatmasstransfer.2005.11.014.CrossRefGoogle Scholar
  28. [28]
    ZHANG Deng-sheng, LU Guo-jun. Review of shape representation and description techniques [J]. Pattern Recognition, 2004, 37(1): 1–19. DOI: 10.1016/j.patcog.2003.07.008.CrossRefGoogle Scholar
  29. [29]
    JIANG Xu, CUI Zhi-xiang, CHEN Mao, ZHAO Bao-jun. Study of plume eye in the copper bottom blown smelting furnace [J]. Metallurgical and Materials Transactions B, 2019, 50(2): 782–789. DOI: 10.1007/s11663-019-01516-0.CrossRefGoogle Scholar
  30. [30]
    KRISHNAPISHARODY K, IRONS G A. A critical review of the modified froude number in ladle metallurgy [J]. Metallurgical and Materials Transactions B, 2013, 44(6): 1486–1498. DOI: 10.1007/s11663-013-9943-4.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Energy Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Institute of Fluid DynamicsHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  3. 3.Chair of Imaging Techniques in Energy and Process EngineeringTechnische UniversitätDresdenGermany

Personalised recommendations