Skip to main content
Log in

Shift scheduling strategy development for parallel hybrid construction vehicles

并联式混合动力工程车辆换挡决策策略开发

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The shift scheduling system of the transmission has an important effect on the dynamic and economic performance of hybrid vehicles. In this work, shift scheduling strategies are developed for parallel hybrid construction vehicles. The effect of power distribution and direction on shift characteristics of the parallel hybrid vehicle with operating loads is evaluated, which must be considered for optimal shift control. A power distribution factor is defined to accurately describe the power distribution and direction in various parallel hybrid systems. This paper proposes a Levenberg-Marquardt algorithm optimized neural network shift scheduling strategy. The methodology contains two objective functions, it is a dynamic combination of a dynamic shift schedule for optimal vehicle acceleration, and an energy-efficient shift schedule for optimal powertrain efficiency. The study is performed on a test bench under typical operating conditions of a wheel loader. The experimental results show that the proposed strategies offer effective and competitive shift performance.

摘要

变速箱换挡决策系统对混合动力车辆的动力性能和经济性能有着重要影响。本文研究了并联式 混合动力工程车辆的换挡决策策略。分析了动力分布及流向对并联式混合动力工程车辆换挡特性的影 响,在换挡优化控制中必须考虑这种影响。定义了一种新的动力分流系数来准确描述各种并联式混合 动力系统中的动力分布及流向。提出了 一种基于Levenberg-Marquardt算法优化神经网络的换挡决策 策略。该方法包含两种目标函数,是车辆加速度最优的动力性换挡策略和动力系统效率最优的节能性 换挡策略的动态结合。采用轮式装载机的典型作业载荷进行了台架实验,结果表明:该换挡策略实现 了有效的、具有优势的换挡性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OH K, YUN S, KO K, HA S, KIM P, SEO J, YI K. Gear ratio and shift schedule optimization of wheel loader transmission for performance and energy efficiency [J]. Automation in Construction, 2016, 69: 89–101. DOI: https://doi.org/10.1016/j.autcon.2016.06.004.

    Article  Google Scholar 

  2. LI Tian-yu, LIU Hui-ying, DING Dao-lin. Predictive energy management of fuel cell supercapacitor hybrid construction equipment [J]. Energy, 2018, 149: 718–729. DOI: https://doi.org/10.1016/j.energy.2018.02.101.

    Article  Google Scholar 

  3. ZENG Xiao-hua, YANG Nan-nan, PENG Yu-jun, ZHANG Ying, WANG Ji-xin. Research on energy saving control strategy of parallel hybrid loader [J]. Automation in Construction, 2014, 38: 100–108. DOI: https://doi.org/10.1016/j.autcon.2013.11.007.

    Article  Google Scholar 

  4. SUN Hui, JING Jun-qing. Research on the system configuration and energy control strategy for parallel hydraulic hybrid loader [J]. Automation in Construction, 2010, 19(2): 213–220. DOI: https://doi.org/10.1016/j.autcon.2009.10.006.

    Article  Google Scholar 

  5. SHEN Wen-chen, YU Hui-long, HU Yu-hui, XI Jun-qiang. Optimization of shift schedule for hybrid electric vehicle with automated manual transmission [J]. Energies, 2016, 9(3): 220. DOI: https://doi.org/10.3390/en9030220.

    Article  Google Scholar 

  6. KIM G W. Systematic gear shift model for an automatic-transmission-based parallel hybrid electric vehicle [J]. Proceedings of the Institution of Mechanical Engineers Part D. Journal of Automobile Engineering, 2012, 226(7): 895–904. DOI: https://doi.org/10.1177/0954407011430276.

    Article  Google Scholar 

  7. SONG M, OH J, KIM J, KIM Y, YI J, KIM Y, KIM H. Development of an electric oil pump control algorithm for an automatic-transmission-based hybrid electric vehicle considering the gear shift characteristics [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2014, 228(1): 21–36. DOI: https://doi.org/10.1177/0954407013497898.

    Article  Google Scholar 

  8. GONG Jie, ZHAO Ding-xuan, HUANG Hai-dong, GONG Wen-bin, CHEN Ying. Study on shift schedule of automatic transmission to improve engineering vehicular efficiency [J]. Chinese Journal of Mechanical Engineering (English Eelition), 2004, 17(1): 124–126.

    Article  Google Scholar 

  9. YIN Jing-xing, TAN Xiao-feng, LEI Yu-long, GE An-lin. Dynamic shift schedule with 3-parameter based on neural network model of engine [J]. Chinese Journal of Mechanical Engineering, 2005, 41(11): 174–178. (in Chinese)

    Article  Google Scholar 

  10. GE An-lin. Theory and design of vehicle automatic transmission [M]. Beijing: China Machine Press, 1993. (in Chinese)

    Google Scholar 

  11. WANG Ji-xin, GONG Da-peng, ZHANG Ying-shuang, DENG Ji-ye, SHEN Yong. Modeling of wheel loader powertrain with three-parameters shift strategy and optimization with genetic algorithm [J]. Journal of Jilin University (Engineering Edition), 2011, 41(S1): 27–33. DOI: https://doi.org/10.13229/j.cnki.jdxbgxb2011.s1.049. (in Chinese)

    Google Scholar 

  12. LI Guang-hui, HU Jian-jun. Modeling and analysis of shift schedule for automatic transmission vehicle based on fuzzy neural network [C]//Intelligent Control and Automation. IEEE, 2010: 4839–4844. DOI: https://doi.org/10.1109/WCICA.2010.5554784.

    Google Scholar 

  13. MORTEZA M G, MEHDI M K. An optimal energy management development for various configuration of plug-in and hybrid electric vehicle [J]. Journal of Central South University, 2015, 22(5): 1737–1747. DOI: https://doi.org/10.1007/s11771-015-2692-6.

    Article  Google Scholar 

  14. CHEN Xue-mei, JIN Min, MIAO Yi-song, ZHANG Qiang. Driving decision-making analysis of car-following for autonomous vehicle under complex urban environment [J]. Journal of Central South University, 2017, 24(6): 1476–1482. DOI: https://doi.org/10.1007/s11771-017-3551-4.

    Article  Google Scholar 

  15. WANG Wei-da, XIANG Chang-le, LIU Hui, JIA Shi-peng. A model-predictive-control-based power management strategy for a power-split electromechanical transmission [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230(14): 108–109. DOI: https://doi.org/10.1177/0954407016630911.

    Google Scholar 

  16. LIN Chan-chiao, PENG Huei, GRIZZLE J W, KANG Jun-mo. Power management strategy for a parallel hybrid electric truck [J]. IEEE Transactions on Control Systems Technology, 2004, 11(6): 839–849. DOI: https://doi.org/10.1109/TCST.2003.815606.

    Google Scholar 

  17. ENGIN O, ONORI S, WOLLAEGER J, OZGUNER U, RIZZONI G, FILEV D, MICHELINI J, CAIRANO S D. Cloud-based velocity profile optimization for everyday driving: A dynamic-programming-based solution [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2491–2505. DOI: https://doi.org/10.1109/TITS.2014.2319812.

    Article  Google Scholar 

  18. ZOU Yuan, LIU Teng, SUN Feng-chun, PENG Huei. Comparative study of dynamic programming and pontryagin’s minimum principle on energy management for a parallel hybrid electric vehicle [J]. Energies, 2013, 6(4): 2305–2318. DOI: https://doi.org/10.3390/en6042305.

    Article  Google Scholar 

  19. ZHAO Xin-xin, ZHANG Wen-ming, FENG Ya-li, YANG Yao-dong. Optimizing gear shifting strategy for off-road vehicle with dynamic programming [J]. Mathematical Problems in Engineering, 2014(10): 1–9. DOI: https://doi.org/10.1155/2014/642949.

    Google Scholar 

  20. WANG Ji-xin, YANG Zhi-yu, LIU Shao-kang, ZHANG Qing-yang, HAN Yun-wu. A comprehensive overview of hybrid construction machinery [J]. Advances in Mechanical Engineering, 2016, 8(3). DOI: https://doi.org/10.1177/1687814016636809.

    Google Scholar 

  21. CHO S T, JEON S, JO H S, LEE J M, PARK Y I. A development of shift control algorithm for improving the shift characteristics of the automated manual transmission in the hybrid drivetrain [J]. International Journal of Vehicle Design, 2001, 26(5): 469–495(27). DOI: https://doi.org/10.1504/IJVD.2001.005219.

    Article  Google Scholar 

  22. TITINA B, TRENC F, KATRAŠNIK T. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles [J]. Energy Conversion & Management, 2009, 50(12): 2865–2878. DOI: https://doi.org/10.1016/j.enconman.2009.06.034

    Article  Google Scholar 

  23. KATRAŠNIK T. Analytical framework for analyzing the energy conversion efficiency of different hybrid electric vehicle topologies [J]. Energy Conversion & Management, 2009, 50(8): 1924–1938. DOI: https://doi.org/10.1016/j.enconman.2009.04.016.

    Article  Google Scholar 

  24. ZHAO Ding-xuan, LI Tian-yu, KANG Huai-liang, ZHANG Zhi-wen, LI Mu-fei. Automatic shift technology of hybrid power engineering vehicle [J]. Journal of Jilin University (Engineering Edition), 2014, 44(2): 358–363. DOI: https://doi.org/10.13229/j.cnki.jdxbgxb201402013 (in Chinese)

    Google Scholar 

  25. WANG Feng, ZULKEFLI M A M, SUN Zong-xuan, STELSON K A. Energy management strategy for a power-split hydraulic hybrid wheel loader [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230(8), 1105–1120. DOI: https://doi.org/10.1177/0954407015600899.

    Google Scholar 

  26. SIDDHARTH D, BODIN U, ANDERSSON U. Key challenges in automation of earth- moving machines [J]. Automation in Construction, 2016, 68: 212–222. DOI: https://doi.org/10.1016/j.autcon.2016.05.009.

    Article  Google Scholar 

  27. LI Tian-yu, LIU Hui-ying, ZHAO Ding-xuan, WANG Li-li. Design and analysis of a fuel cell supercapacitor hybrid construction vehicle [J]. International Journal of Hydrogen Energy, 2016, 41(28): 12307–12319. DOI: https://doi.org/10.1016/j.ijhydene.2016.05.040.

    Article  Google Scholar 

  28. LAREW W B. Fluid clutches and torque converters [M]. Pennsylvania: Chilton Company, 1968.

    Google Scholar 

  29. LI Tian-yu. Study on automatic shift strategy and control method of hybrid construction vehicle [D]. Changchun, China: Jilin University, 2014. (in Chinese)

    Google Scholar 

  30. LV Chang. Intelligent shift schedule based on working conditions of loader [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(3): 69–73. (in Chinese)

    Google Scholar 

  31. LERA G, MIGUEL P. Neighborhood based Levenberg-Marquardt algorithm for neural network training [J]. IEEE Transactions on Neural Networks, 2002, 13(5): 1200–3. DOI: https://doi.org/10.1109/TNN.2002.1031951.

    Article  Google Scholar 

  32. NGIA L S, JONAS S. Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm [J]. IEEE Transactions on Signal Processing, 2000, 48(7): 1915–1927. DOI: https://doi.org/10.1109/78.847778.

    Article  MATH  Google Scholar 

  33. ZHAO Ding-xuan, ZHANG Zhi-wen, LI Tian-yu, ZHANG Min, DONG Yan. Fuzzy logic control strategy of parallel hybrid power loader [J]. Journal of Jilin University (Engineering Edition), 2014, 44(4): 1004–1009. DOI: https://doi.org/10.13229/j.cnki.jdxbgxb201404016. (in Chinese)

    Google Scholar 

  34. SCHOUTEN N J, MUTASIM A S, NAIM A K. Fuzzy logic control for parallel hybrid vehicles [J]. IEEE Transactions on Control Systems Technology, 2002, 10(3): 460–468. DOI: https://doi.org/10.1109/87.998036.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-yu Li  (李天宇).

Additional information

Foundation item: Project(51805200) supported by the National Natural Science Foundation of China; Project(20170520096JH) supported by the Science and Technology Development Plan of Jilin Province, China; Project(2016YFC0802900) supported by the National Key R&D Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ty., Liu, Hy., Zhi-wen, Z. et al. Shift scheduling strategy development for parallel hybrid construction vehicles. J. Cent. South Univ. 26, 587–603 (2019). https://doi.org/10.1007/s11771-019-4030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4030-x

Key words

关键词

Navigation